On the Strength of First Order Phase Transitions

  • Marcelo Gleiser
Part of the NATO ASI Series book series (NSSB, volume 338)


Electroweak baryogenesis may solve one of the most fundamental questions we can ask about the universe, that of the origin of matter. It has become clear in the past few years that it also poses a multi-faceted challenge. In order to compute the tiny primordial baryonic excess, we probably must invoke physics beyond the standard model (an exciting prospect for most people), we must push perturbation theory to its “limits” (or beyond), and we must deal with nonequilibrium aspects of the phase transition. In this talk, I focus mainly on the latter issue, that of nonequilibrium aspects of first order transitions. In particular, I discuss the elusive question of “weakness”. What does it mean to have a weak first order transition, and how can we distinguish between weak and strong? I argue that weak and strong transitions have very different dynamics; while strong transitions proceed by the usual bubble nucleation mechanism, weak transitions are characterized by a mixing of phases as the system reaches the critical temperature from above. I show that it is possible to clearly distinguish between the two, and discuss consequences for studies of first order transitions in general.


Critical Temperature Higgs Masse Order Transition Order Phase Transition Strong Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Becker and W. Döring, Ann. Phys. (Leipzig) 24, 719 (1935).ADSMATHGoogle Scholar
  2. 2.
    J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 31, 688 (1959)ADSCrossRefGoogle Scholar
  3. J. S. Langer, Ann. Phys. (NY) 41, 108 (1967); ibid. 54, 258 (1969)ADSCrossRefGoogle Scholar
  4. 3.
    J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz (Academic, London, 1983), Vol. 8.Google Scholar
  5. 4.
    M. B. Voloshin, I. Yu. Kobzarev, and L. B. Okun’, Yad. Fiz. 20, 1229 (1974) [Sov. J. Nucl. Phys. 20, 644 (1975)].Google Scholar
  6. 5.
    S. Coleman, Phys. Rev. D15, 2929 (1977)ADSGoogle Scholar
  7. C. Callan and S. Coleman, Phys. Rev. D16, 1762 (1977).ADSGoogle Scholar
  8. 6.
    A. D. Linde, Nucl. Phys. B216, 421 (1983); [Erratum: B223, 544 (1983)].MathSciNetADSCrossRefGoogle Scholar
  9. 7.
    L. P. Csernai and J. I. Kapusta, Phys. Rev. D46, 1379 (1992)ADSGoogle Scholar
  10. M. Gleiser, G. Marques, and R. Ramos, Phys. Rev. D48, 1571 (1993)ADSGoogle Scholar
  11. D. Brahm and C. Lee, Phys. Rev. D49, 4094 (1994).ADSGoogle Scholar
  12. 8.
    E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley (1990).Google Scholar
  13. 9.
    V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, Phys. Lett. B155, 36 (1985).ADSGoogle Scholar
  14. For a recent review see, A. Cohen, D. Kaplan, and A. Nelson, Ann. Rev. Nucl. Part. Sci. 43, 27 (1993).ADSCrossRefGoogle Scholar
  15. 10.
    R.H. Brandenberger and A.-C. Davis, Phys. Lett. B308, 79 (1993).ADSGoogle Scholar
  16. 11.
    B. Liu, L. McLerran, and N. Turok, Phys. Rev. D46, 2668 (1992); M. Dine and S. Thomas, Santa Cruz preprint No. SCIPP 94/01.ADSGoogle Scholar
  17. 12.
    P. Arnold and O. Espinosa, Phys. Rev. D47, 3546 (1993)ADSGoogle Scholar
  18. M. Dine, P. Huet, R.G. Leigh, A. Linde, and D. Linde, Phys. Rev. D46, 550 (1992)ADSGoogle Scholar
  19. C.G. Boyd, D.E. Brahm, and S. Hsu, Phys. Rev. D48, 4963 (1993)ADSGoogle Scholar
  20. M. Quiros, J.R. Spinosa, and F. Zwirner, Phys. Lett. B314, 206 (1993)ADSGoogle Scholar
  21. W. Buchmüller, T. Helbig, and D. Walliser, Nucl. Phys. B407, 387 (1993)ADSCrossRefGoogle Scholar
  22. M. Carrington, Phys. Rev. D45, 2933 (1992).ADSGoogle Scholar
  23. 13.
    P. Arnold and L. Yaffe, Phys. Rev. D49, 3003 (1994)ADSGoogle Scholar
  24. M. Gleiser and E.W. Kolb, Phys. Rev. D48, 1560 (1993).ADSGoogle Scholar
  25. 14.
    K. Farakos, K. Kajantie, K. Rummukainen, and M. Shaposhnikov, CERN preprint No. TH.7244/94, May 1994Google Scholar
  26. K. Kajantie, K. Rummukainen, and M. Shaposhnikov, Nucl. Phys. B407, 356 (1993)ADSCrossRefGoogle Scholar
  27. B. Bunk, E.-M. Ilgenfritz, J. Kripfganz, and A. Schiller, Phys. Lett. B284, 372 (1992); Nucl. Phys. B403, 453 (1993)ADSGoogle Scholar
  28. 15.
    See, e. g. the work of Gleiser, Marques, and Ramos in Ref. 7; P. Arnold and L. McLerran, Phys. Rev. D36, 581 (1987)ADSGoogle Scholar
  29. S. Dodelson and B. Gradwohl, Nucl. Phys. B400, 435 (1993).ADSCrossRefGoogle Scholar
  30. 16.
    M. Gleiser and E. W. Kolb, Phys. Rev. Lett. 69, 1304 (1992); Phys. Rev. D48, 1560 (1993)ADSCrossRefGoogle Scholar
  31. M. Gleiser, E. W. Kolb, and R. Watkins, Nucl. Phys. B364, 411 (1991).MathSciNetADSCrossRefGoogle Scholar
  32. 17.
    M. Dine, P. Huet, R.G. Leigh, A. Linde, and D. Linde, Phys. Rev. D46, 550 (1992)ADSGoogle Scholar
  33. G. Anderson, Phys. Lett. B295, 32 (1992).ADSGoogle Scholar
  34. 18.
    G. Gelmini and M. Gleiser, in press, Nucl. Phys. B.Google Scholar
  35. 19.
    M. Gleiser, Dartmouth preprint No. DART-HEP-94/01.Google Scholar
  36. 20.
    D. P. Landau in Finite Size Scaling and Numerical Simulations of Statistical Systems, edited by V. Privman (World Scientific, Singapore, 1990).Google Scholar
  37. 21.
    M. Alford and M. Gleiser, Phys. Rev. D48, 2838 (1993)ADSGoogle Scholar
  38. O. T. Valls and G. F. Mazenko, Phys. Rev. B42, 6614 (1990).ADSGoogle Scholar
  39. 22.
    S. Chandrasekhar, Liquid Crystals, (Cambridge University Press, Cambridge [Second edition, 1992]).CrossRefGoogle Scholar
  40. 23.
    T. W. Stinson and J. D. Litster, Phys. Rev. Lett 25, 503 (1970)ADSCrossRefGoogle Scholar
  41. H. Zink and W. H. de Jeu, Moi Cryst. Liq. Cryst. 124, 287 (1985).CrossRefGoogle Scholar
  42. 24.
    K. Chou, Z. Su, B. Hao and L. Yu, Phys. Rep. 118, 1 (1985)MathSciNetADSCrossRefGoogle Scholar
  43. R. R. Parwani, Phys. Rev. D45, 4695 (1992)ADSGoogle Scholar
  44. S. Jeon, Phys. Rev. D47, 4586 (1993).ADSGoogle Scholar
  45. 25.
    M. Gleiser and R. Ramos, Dartmouth preprint No. DART-HEP-93/06; B. L. Hu, J. P. Paz and Y. Zhang, in The Origin of Structure in the Universe, Ed. E. Gunzig and P. Nardone (Kluwer Acad. Publ. 1993)Google Scholar
  46. D. Lee and D. Boyanovsky, Nucl. Phys. B406, 631 (1993)MathSciNetADSCrossRefGoogle Scholar
  47. S. Habib, in Stochastic Processes in Astrophysics, Proc. Eighth Annual Workshop in Nonlinear Astronomy (1993).Google Scholar
  48. 26.
    A. Nordsiek, Math. Comp. 16, 22 (1962).MathSciNetADSCrossRefGoogle Scholar
  49. 27.
    M. Gleiser and R. Ramos, Phys. Lett. B300, 271 (1993).ADSGoogle Scholar
  50. 28.
    J. Langer, Physica 73, 61 (1974)ADSCrossRefGoogle Scholar
  51. J. Langer, M. Baron, and H. Miller, Phys. Rev. A11, 1417 (1975).ADSGoogle Scholar
  52. 29.
    J. Borrill and M. Gleiser, in progress.Google Scholar
  53. 30.
    F. W. Deeg and M. D. Fayer, Chem. Phys. Lett. 167, 527 (1990)ADSCrossRefGoogle Scholar
  54. J. D. Litster and T. W. Stinson, J. App. Phys., 41, 996 (1970).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Marcelo Gleiser
    • 1
  1. 1.Department of Physics and AstronomyDartmouth CollegeHanoverUSA

Personalised recommendations