Advertisement

3D Physics and the Electroweak Phase Transition: Perturbation Theory and Lattice Monte Carlo Analysis

  • K. Kajantie
  • M. Shaposhnikov
Part of the NATO ASI Series book series (NSSB, volume 338)

Abstract

We know the Lagrangian of the SU(3)×SU(2)×U(l) standard model (SM) and, therefore, also the equilibrium thermodynamics of the quantum system with the spectrum of the SM: it is given by the functional integral
$${e^{ - F/T}} = \int {D\Phi {\mkern 1mu} \exp \left[ { - \frac{1}{\hbar }\int_0^{\beta \hbar } {d\tau } \int {{d^3}} x\pounds\left( {\Phi \left( {\tau ,{\text{x}}} \right)} \right)} \right],}$$
(1)
where the symbol Φ denotes generically all the fields of the SM. In a sense the problem of the electroweak (EW) phase transition thus is trivial: just calculate the above functional integral to give the free energy F and all the thermodynamics.

Keywords

Perturbation Theory Critical Temperature Higgs Mass Break Phase Higgs Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. Jackiw, Phys. Rev. D9 (1974) 1686ADSGoogle Scholar
  2. [2]
    D. A. Kirzhnitz, JETP Lett. 15 (1972) 529ADSGoogle Scholar
  3. D. A. Kirzhnitz and A. D. Linde, Phys. Lett. 72B (1972) 471ADSGoogle Scholar
  4. [3]
    L. Dolan and R. Jackiw, Phys.Rev. D9 (1974) 3320ADSGoogle Scholar
  5. [4]
    S. Weinberg, Phys.Rev. D9 (1974) 3357ADSGoogle Scholar
  6. [5]
    D.A. Kirzhnitz and A.D. Linde, Ann. Phys. 101 (1976) 195ADSCrossRefGoogle Scholar
  7. A.D. Linde, Nucl. Phys. B216 (1983) 421, Rep. Prog. Phys. 47 (1984) 925MathSciNetADSCrossRefGoogle Scholar
  8. [6]
    M.E. Shaposhnikov. Nucl. Phys. B287 (1987) 757ADSCrossRefGoogle Scholar
  9. A.I. Bochkarev and M.E. Shaposhnikov, Mod. Phys. Lett. 2A (1987) 417ADSGoogle Scholar
  10. [7]
    G.W. Anderson and L.J. Hall, Phys. Rev. D45 (1992) 2685ADSGoogle Scholar
  11. [8]
    K. Enqvist, J. Ignatius, K. Kajantie and K. Rummukainen, Phys. Rev. D45 (1992) 3415ADSGoogle Scholar
  12. [9]
    M.E. Shaposhnikov, Phys. Lett. B277 (1992) 324; B282 (1992) 483(E)ADSGoogle Scholar
  13. [10]
    M. Carrington, Phys. Rev. D45 (1992) 2933ADSGoogle Scholar
  14. [11]
    M. Dine, R. G. Leigh, P. Huet, A. Linde and D. Linde, Phys. Rev. D46 (1992) 550ADSGoogle Scholar
  15. [12]
    C. G. Boyd, D. E. Brahm and S. Hsu, Phys. Rev. D48 (1993) 4963ADSGoogle Scholar
  16. [13]
    M. Quiros, J.R. Espinosa and F. Zwirner, Phys. Lett. B314 (1993) 206ADSGoogle Scholar
  17. [14]
    W. Buchmüller, T. Helbig and D. Walliser, Nucl. Phys. B407 (1993) 387ADSCrossRefGoogle Scholar
  18. [15]
    W. Buchmüller, Z. Fodor, T. Helbig and D. Walliser, DESY Preprint DESY-93-021 (1993), Ann. Phys., to be publishedGoogle Scholar
  19. [16]
    P. Arnold and O. Espinosa, Phys. Rev. D47 (1993) 3546ADSGoogle Scholar
  20. [17]
    A. Hebecker, Z. Phys. C60 (1993) 271ADSGoogle Scholar
  21. [18]
    Z. Fodor and A. Hebecker, DESY preprint DESY 94-025, 1994Google Scholar
  22. [19]
    B. Bunk, E.-M. Ilgenfritz, J. Kripfganz, A. Schiller, Phys. Lett. B284 (1992) 371; Nucl. Phys. B403 (1993) 453ADSGoogle Scholar
  23. [20]
    K. Kajantie, K. Rummukainen and M. Shaposhnikov, Nucl. Phys. B407 (1993) 356ADSCrossRefGoogle Scholar
  24. [21]
    K. Farakos, K. Kajantie, K. Rummukainen and M. Shaposhnikov, CERN Preprint CERN-TH.6973/94, hep-ph 9404201Google Scholar
  25. [22]
    M. Shaposhnikov, Phys. Lett. B316 (1993) 112ADSGoogle Scholar
  26. [23]
    K. Farakos, K. Kajantie, K. Rummukainen and M. Shaposhnikov, CERN Preprint CERN-TH.7244/94, hep-ph 9404234Google Scholar
  27. [24]
    K. Farakos, K. Kajantie, K. Rummukainen and M. Shaposhnikov, CERN Preprint CERN-TH.7220/94, in preparationGoogle Scholar
  28. [25]
    S. Weinberg, Phys. Lett. 91B (1980) 51ADSGoogle Scholar
  29. [26]
    M. Lindner, M. Sher and H. Zaglauer, Phys. Lett. B228 (1989) 139ADSGoogle Scholar
  30. [27]
    A. Jakovác, K. Kajantie and A. Patkos, Helsinki preprint HU-TFT-94-01, hep-ph-9312355Google Scholar
  31. [28]
    M. Reuter and C. Wetterich, Nucl. Phys. B408 (1993) 91ADSCrossRefGoogle Scholar
  32. [29]
    H.J. Herrmann, W. Janke and F. Karsch (eds.), Proc. Workshop on Dynamics of First Order Phase Transitions, Jülich, June 1992 (World Scientific, Singapore, 1992)Google Scholar
  33. [30]
    C. Borgs, R. Kotecký and S. Miracle-Sole, J. Stat. Phys. 62 (1991) 529ADSCrossRefGoogle Scholar
  34. [31]
    A. M. Ferrenberg and R. H. Swendsen, Phys. Rev. Lett. 61 (1988) 2635ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • K. Kajantie
    • 1
  • M. Shaposhnikov
    • 2
  1. 1.Department of Theoretical PhysicsUniversity of HelsinkiFinland
  2. 2.CERN/THGeneve 23Switzerland

Personalised recommendations