Advertisement

Influence of Electrode Materials and Coverings on the Gaseous By-Products Generated by Air Corona Discharges

  • N. Foulon-Belkacemi
  • M-P. Panaget
  • M. Goldman
  • A. Goldman

Abstract

It is well known that, by electron / molecule collisions, corona discharges in atmospheric air produce reactive species which can be enumerated as followed: primary charged products which should mainly be O2 , O and OH ions for the negatively charged species and N2 +, N+, O2 +, O+ ions for the positively charged species; neutral active products N, N2*, N*, O, O2*, O* and OH.

Keywords

Corona Discharge Gaseous Species Copper Electrode Plane Electrode Corona Streamer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Foulon-Belkacemi, M.P. Panaget, M. Goldman, A. Goldman, Cinétique des phénomènes de dégradation d’un isolant soumis à des décharges couronnes filamentaires, to be published in Journal de Physique (1993).Google Scholar
  2. 2.
    V. Sobek, A. Goldman, M. Goldman, S. Bureau, S. Bouquet, C. Fiaud, Experimental simulation of atmospheric corrosion by use of a corona discharge, 4th International Symposium of High Pressure and Low Temperature Plasma Chemistry, Hakone IV, Slovakia (1993).Google Scholar
  3. 3.
    M. Morvova, M. Kurdel, I. Morva, The plasmachemical and electrocatalytical effects of corona discharge of both polarities on CO and CO2 mixtures with air for various materials of electrodes, 4th International Symposium of High Pressure and Low Temperature Plasma Chemistry, Hakone TV, Slovakia (1993).Google Scholar
  4. 4.
    D. Rapakoulias, J. Amouroux, M.P. Bergougnan, A. Gicquel, Processus catalytiques dans les réacteurs à plasma hors équilibre III-Décomposition de NH3, Revue Physique Appliquée, 17:95 (1982).CrossRefGoogle Scholar
  5. 5.
    M. Goldman, A. Goldman and R.S. Sigmond, The corona discharge, its properties and specific uses, Pure and Applied Chemistry, 57:1353 (1985).CrossRefGoogle Scholar
  6. 6.
    N. Foulon-Belkacemi, M. Goldman, A. Goldman, H. Dejean, J. Amouroux, The mechanism of degradation of polymers under corona streamers: relative humidity influence, IEE Internatinal Conference of Partial Discharges. (1993).Google Scholar
  7. 7.
    C.Y. Kim, D.A.I. Goring, Surface morphology of polyethylene after treatment in a corona discharge, Journal of Applied Polymer Science, 15:1357 (1971).CrossRefGoogle Scholar
  8. 8.
    J.P. Borra, A. Goldman, M. Goldman, D. Boulaud, Generation of condensation nuclei by dc electrical discharges in point-to-plane configuration, to be published in Journal of Aerosol Science (Juin 1994).Google Scholar
  9. 9.
    J.S. Chang, Energetic electron induced plasma processes for reduction of acid and greenhouse gases in combustion flue gas, Non Thermal Plasma Techniques for Pollution Control NATO ASI Series, Vol.G34, Part A (1993).Google Scholar
  10. 10.
    J. Amouroux, J.L. Brisset, A. Doubla, A. Goldman, M. Goldman, Acid-base properties and reactivity towards surfaces of the gaseous uncharged activated species created in a DC corona discharge, International Symposium of plasma chemistry n°8, DVII-02, (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • N. Foulon-Belkacemi
    • 1
  • M-P. Panaget
    • 1
  • M. Goldman
    • 1
  • A. Goldman
    • 1
  1. 1.Laboratoire de Physique des DéchargesCNRS/ESEGif/Yvette CedexFrance

Personalised recommendations