Reduction of NOx and SOx from Combustion Flue Gases by a Corona Discharge-Electron Beam Hybrid System

  • J. S. Chang
  • P. C. Looy
  • T. Yoshioka
  • K. Nagai


The NOX and SOX emissions are the major cause of acid rain. The CO2 and CH4 emissions cause a greenhouse effect which leads to abnormal global heating of the atmosphere and can create a temperature inversion layer that traps pollutants. There is a vital interest in controlling these emissions — in the near term for acid rain and in the long term for the greenhouse effect.


Corona Discharge Flame Length Hollow Electrode Temperature Inversion Layer Corona Discharge Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S. Chang, The role of H2O on the formation of NH4NO3 aerosol particles and De-NOx under the corona discharge treatment of combustion flue gases, J. Aerosol Sci., 20:1087–1090 (1989).CrossRefGoogle Scholar
  2. 2.
    J.S. Chang, Energetic electron induced plasma processes for a reduction of acid and greenhouse gases in a combustion flue gas, in “Non-Thermal Plasma Techniques for Pollution Control”, B. Penetronte, Ed., Plenum Press, New York (1994).Google Scholar
  3. 3.
    J.S. Chang and S. Masuda, Mechanism of pulse corona induced plasma chemical process for removal of NOX and SO2 from combustion flue gases, in IEEE Industry Appl. Soc. 1988 Meeting, pp. 1645-1653 (1988).Google Scholar
  4. 4.
    J.S. Chang, P.A. Lawless and T. Yamamoto, Corona discharge processes, IEEE Trans. Plasma Sci. 19:1102–1166 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    G. Dinelli, L. Civitano and M. Rea, Industrial experiments on pulse simultaneous removal of NOX and SOX from flue gases, IEEE Trans. Industry Application, 25:535–541 (1990).CrossRefGoogle Scholar
  6. 6.
    M. Higashi, S. Uchida, N. Suzuki, and Fujii, K., Simultaneous reduction of soot and NOX in a diesel engine exhaust by discharge plasma, Trans. IEE Japan, 111A:457–473 (1991).Google Scholar
  7. 7.
    S. Jordan, H.R. Pour, W. Cherdron and W. Lindner, Physical and chemical properties of the aerosol produced by the electron beam dry scrubbing of the flue gas, J. Aerosol. Sci., 17:669–675 (1988).CrossRefGoogle Scholar
  8. 8.
    K. Kawamura, S. Aoki, H. Kimura, K. Adachi, T. Katayama, K. Kengaku and Y. Sawada, Electron beam dry flue gas treatment process, Environ. Sci. & Tech., 14:288 (1980).CrossRefGoogle Scholar
  9. 9.
    K. Kawamura, S. Hitano, Y. Hirano, A. Maezawa, S. Aoki, M. Kaneko and R. Suzuki, Development of electron beam dry flue gas treatment process (EBA process) — Process demonstration operation in USA coal-fired power station, Ebara Jiho, 141:2–10 (1988).Google Scholar
  10. 10.
    S. Masuda and Y. Wu, Removal of sulfur from stack gases by an electric discharge, Electrostatics 87, Inst. Phys. Conf. Ser. 85, IOP Press, Oxford, pp. 249–254 (1987).Google Scholar
  11. 11.
    F.J. Palumbo and F. Fraas, The removal of sulfur from stack gases by an electric discharge, J. Air Pollution Contr. Assoc, 21:143–144 (1971).CrossRefGoogle Scholar
  12. 12.
    T. Ohkubo, S. Kanazawa, Y. Nomoto, J.S. Chang and T. Adachi, NOX removal by a pipe with nozzle-plate electrode corona discharge system, Trans. IEEE Industry Applications (In Press, 1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • J. S. Chang
    • 1
  • P. C. Looy
    • 1
  • T. Yoshioka
    • 2
  • K. Nagai
    • 2
  1. 1.Department of Engineering PhysicsMcMaster UniversityHamiltonCanada
  2. 2.Ebara Research Co.Fujisawa 251Japan

Personalised recommendations