Skip to main content

Abstract

This chapter on the latent class model has three purposes:

The latent class model (LCM) is introduced in a way that assumes little prior knowledge of the model. This introduction does, however, draw on other backgrounds, methodological or statistical, as do other chapters in this book. The goal is to show how the LCM arises naturally from the theory or the subject matter of social research, in many contexts at least. Many papers or books can serve as introductory treatments of LCMs as well as reviews of the literature: Andersen (1982, 1991), Bergan (1983), Goodman (1974b), Langeheine (1988), Langeheine and Rost (1988), Lazarsfeld and Henry (1968), McCutcheon (1987), Dillon and Goldstein (1984, chap. 10), and Schwartz (1986), among others. Because so many detailed introductions exist already, an abbreviated introduction should suffice here.

Deceased

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Agresti, A. (1988), “A Model for Agreement Between Ratings on an Ordinal Scale,” Biometrics, 44, 539–548.

    Article  Google Scholar 

  • Agresti, A. (1990), Categorical Data Analysis, New York: Wiley.

    Google Scholar 

  • Agresti, A. (1992), “Computing Conditional Maximum Likelihood Estimates for Generalized Rasch Models Using Simple Loglinear Models with Diagonals Parameters,” Scandinavian Journal of Statistics, 19, forthcoming.

    Google Scholar 

  • Aitkin, M., Anderson, D., and Hinde, J. (1981), “Statistical Modelling of Data on Teaching Styles,” Journal of the Royal Statistical Society, Ser. A, 144, 419–461.

    Google Scholar 

  • Andersen, E. B. (1982), “Latent Structure Analysis: A Survey,” Scandinavian Journal of Statistics, 9, 1–12.

    Google Scholar 

  • Andersen, E. B. (1990), The Statistical Analysis of Categorical Data Rev. and enl. ed., Berlin: Springer-Verlag.

    Google Scholar 

  • Andrich, D. (1979), “A Model for Contingency Tables Having an Ordered Response Classification,” Biometrics, 35, 403–415.

    Article  Google Scholar 

  • Arminger, G. (1985), “Analysis of Qualitative Individual Data and of Latent Class Models With Generalized Linear Models,” pp. 51–79 in P. Nijkamp, H. Leitner, and N. Wrigley, eds., Measuring the Unmeasurable, Dordrecht: Nijhoff Publishers.

    Chapter  Google Scholar 

  • Bartholomew, D. J. (1987), Latent Variable Models and Factor Analysis, London: Charles Griffin.

    Google Scholar 

  • Becker, M. P., and Clogg, C. C. (1988), “A Note on Approximating Correlations from Odds Ratios,” Sociological Methods and Research, 16, 407–24.

    Article  Google Scholar 

  • Bergan, J. R. (1983), “Latent-Class Models in Educational Research,” pp. 305–360 in E. W. Gordon, ed., Review of Research on Education, Washington, DC.: American Educational Research Association.

    Google Scholar 

  • Blau, P. M., and Duncan, O. D. (1967), The American Occupational Structure, New York: Wiley.

    Google Scholar 

  • Boeckenholt, U. (1992), “Applications of Thurstonian Models to Ranking Data,” pp. 157–172 in M. A. Fligner, and J. S. Verducci, eds., Probability Models and Statistical Analysis for Ranking Data, Berlin: Springer-Verlag.

    Google Scholar 

  • Boeckenholt, U. and Boeckenholt, I. (1991), “Constrained Latent Class Analysis: Simultaneous Classification and Scaling of Discrete Choice Data,” Psychometrika, 56, 699–716.

    Article  Google Scholar 

  • Breiger, R. L. (1981), “The Social Class Structure of Occupational Mobility,” American Journal of Sociology, 87, 578–611.

    Article  Google Scholar 

  • Bye, B. V., and Schechter, E. S. (1986), “A Latent Markov Model Approach to the Estimation of Response Error in Multiwave Panel Data,” Journal of the American Statistical Association, 81, 375–380.

    Article  Google Scholar 

  • Clogg, C. C. (1977), “Unrestricted and Restricted Maximum Likelihood Latent Structure Analysis: A Manual for Users,” Working Paper 1977–09, Population Issues Research Center, Pennsylvania State University (Manual for MLLSA program)

    Google Scholar 

  • Clogg, C. C. (1979), “Some Latent Structure Models for the Analysis of Likert-Type Data,” Social Science Research, 8, 287–301.

    Article  Google Scholar 

  • Clogg, C. C. (1981 a), “Latent Structure Models of Mobility,” American Journal of Sociology, 86, 836–868.

    Google Scholar 

  • Clogg, C. C. (1981b), “A Comparison of Alternative Models for Analyzing the Scalability of Response Patterns,” pp. 240–280 in S. Leinhardt, ed., Sociological Methodology 1981, San Francisco: Jossey-Bass.

    Google Scholar 

  • Clogg, C. C. (1981c), “New Developments in Latent Structure Analysis,” pp. 214–246 in D. M. Jackson and E. F. Borgatta, eds., Factor Analysis and Measurement in Sociological Research, Beverly Hills, CA: Sage.

    Google Scholar 

  • Clogg, C. C. (1982), “Some Models for the Analysis of Association in Multi-Way Cross-Classifications Having Ordered Categories,” Journal of the American Statistical Association, 77, 803–815.

    Article  Google Scholar 

  • Clogg, C. C. (1984), “Some Statistical Models for Analyzing Why Surveys Disagree,” pp. 319–366 in C. F. Turner and E. Martin, eds., Surveying Subjective Phenomena, Vol. 2, New York: Russell Sage Foundation.

    Google Scholar 

  • Clogg, C. C. (1988), “Latent Class Models for Measuring,” pp. 173–205 in R. Langeheine and

    Google Scholar 

  • J. Rost, eds., Latent Trait and Latent Class Models, New York: Plenum. (1992), “The Impact of Sociological Methodology on Statistical Methodology” (with discussion), Statistical Science, 7, 183–196.

    Google Scholar 

  • Clogg, C. C., and Dajani, A. (1991), “Sources of Uncertainty in Modeling Social Statistics: An Inventory,” Journal of Official Statistics, 7, 7–24.

    Google Scholar 

  • Clogg, C. C., and Goodman, L.A. (1984), “Latent Structure Analysis of a Set of Multidimensional Contingency Tables, ” Journal of the American Statistical Association, 79, 762–71.

    Article  Google Scholar 

  • Clogg, C. C., and Goodman, L.A. (1985), “Simultaneous Latent Structure Analysis in Several Groups,” pp. 81–110 in N. B. Tuma, ed., Sociological Methodology 1985, San Francisco: Jossey-Bass. (1986), “On Scaling Models Applied to Data from Several Groups,” Psychome- trika, 51, 123–35.

    Google Scholar 

  • Clogg, C. C., Rubin, D. B., Schenker, N., Schultz, B., and Weidman, L. (1991), “Multiple Imputation of Industry and Occupation Codes in Census Public-Use Samples Using Bayesian Logistic Regression,” Journal of the American Statistical Association, 86, 68–78.

    Article  Google Scholar 

  • Collins, L. M., and Wugalter, S. E. (1993), “Latent Class Models for Stage-Sequential Dynamic Latent Variables,” Multivariate Behavioral Research, forthcoming.

    Google Scholar 

  • Cressie, N., and Read, T. R. C. (1984), “Multinomial Goodness-of-Fit Tests,” Journal of the Royal Statistical Society, Ser. B, 46, 440–464.

    Google Scholar 

  • Cressie, N., and Holland, P. W. (1983), “Characterizing the Manifest Probabilities of Latent Trait Models,” Psychometrika, 48, 129–141.

    Article  Google Scholar 

  • Croon, M. (1990), “Latent Class Analysis With Ordered Latent Classes,” British Journal of Mathematical and Statistical Psychology, 43, 171–192.

    Article  Google Scholar 

  • Croon, M. and Luijkx, R. (1992), “Latent Structure Models for Ranking Data,” pp. 5374 in M. A. Fligner, and J. S. Verducci, eds., Probability Models and Statistical Analyses for Ranking Data, Berlin: Springer-Verlag.

    Google Scholar 

  • Dayton, C. M., and Macready, G. D. (1980), “A Scaling Model With Response Errors and Intrinsically Unscalable Respondents,” Psychometrika, 45, 343–356.

    Article  Google Scholar 

  • Dayton, C. M., and Macready, G. B. (1988), “Concomitant Variable Latent Class Models,” Journal of the American Statistical Association, 83, 173–178.

    Article  Google Scholar 

  • de Leeuw, J., and Verhelst, N. (1986), “Maximum Likelhood Estimation in Generalized Rasch Models, ” Journal of Educational Statistics, 11, 183–196.

    Google Scholar 

  • de Leeuw, J., and van der Heijden, P. G. M. (1991), “Reduced Rank Models for Contingency Tables,” Biometrika, 78, 229–232.

    Google Scholar 

  • Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood Estimation from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Ser. B, 39, 1–38.

    Google Scholar 

  • Dillon, W. R., and Goldstein, M. (1984), Multivariate Analysis: Theory and Applications, New York: Wiley.

    Google Scholar 

  • Eliason, S. R. (1990), The Categorical Data Analysis System. Version 3.50 User’s Manual, University of Iowa, Department of Sociology.

    Google Scholar 

  • Espeland, M. A., and Handelman, S. A. (1989), “Using Latent Class Models to Characterize and Assess Relative Error in Discrete Measurements,” Biometrics, 45, 587599.

    Google Scholar 

  • Follman, D. A. (1988), “Consistent Estimation in the Rasch Model B ased on Nonparametric Margins,” Psychometrika, 53, 553–562.

    Article  Google Scholar 

  • Formann, A. K. (1985), “Constrained Latent Class Models: Theory and Applications,” British Journal of Mathematical and Statistical Psychology, 38, 87–111.

    Article  Google Scholar 

  • Formann, A. K. (1988), “Latent Class Models for Nonmonotone Dichotomous Items,” Psychome- trika, 56, 45–62.

    Google Scholar 

  • Formann, A. K. (1992), “Linear Logistic Latent Class Analysis for Polytomous Data,” Journal of the American Statistical Association, 87, 476–486.

    Article  Google Scholar 

  • Formann, A. K. (1993), “Measuring Change Using Latent Class Analysis,” in A. von Eye, and C. C. Clogg, eds., Analysis of Latent Variables in Developmental Research, Newbury Park, CA: Sage.

    Google Scholar 

  • Goodman, L. A. (1974a), “The Analysis of Systems of Qualitative Variables When Some of the Variables Are Unobservable. Part I-A Modified Latent Structure Approach,” American Journal of Sociology, 79, 1179–1259.

    Article  Google Scholar 

  • Goodman, L. A. (1974b), “Exploratory Latent Structure Analysis Using Both Identifiable and Unidentifiable Models,” Biometrika, 61, 215–231.

    Article  Google Scholar 

  • Goodman, L. A. (1975), “A New Model for Scaling Response Patterns: An Application of the Quasi-Independence Concept,” Journal of the American Statistical Association, 70, 755–768.

    Article  Google Scholar 

  • Goodman, L. A. (1984), The Analysis of Cross-Classifications Having Ordered Categories, Cambridge, Mass.: Harvard University Press.

    Google Scholar 

  • Goodman, L. A. (1987), “New Methods for Analyzing the Intrinsic Character of Qualitative Variables Using Cross-Classified Data,” American Journal of Sociology, 93, 529–583.

    Article  Google Scholar 

  • Goodman, L. A., and Clogg, C. C. (1992), “New Methods for the Analysis of Occupational Mobility Tables and Other Kinds of Cross-Classifications,” Contemporary Sociology, 21, 609–622.

    Article  Google Scholar 

  • Haberman, S. J. (1977), “Product Models for Frequency Tables Involving Indirect Observation,” Annals of Statistics, 5, 1124–1147.

    Article  Google Scholar 

  • Haberman, S. J. (1979), Analysis of Qualitative Data. Vol. 2. New Developments, New York: Academic Press.

    Google Scholar 

  • Haberman, S. J. (1988), “A Stabilized Newton-Raphson Algorithm for Loglinear Models for Frequency Tables Derived by Indirect Observation,” pp. 193–212 in C. C. Clogg, ed., Sociological Methodology 1988, Washington, D.C.: American Sociological Association.

    Google Scholar 

  • Hagenaars, J. A. (1986), “Symmetry, Quasi-Symmetry, and Marginal Homogeneity on the Latent Level,” Social Science Research, 15, 241–255.

    Article  Google Scholar 

  • Hagenaars, J. A. (1988), “Latent Structure Models With Direct Effects Between Indicators,” Sociological Methods and Research, 16, 379–405.

    Article  Google Scholar 

  • Hagenaars, J. A. (1990), Categorical Longitudinal Data: Log-Linear Panel, Trend, and Cohort Analysis, Newbury Park, CA: Sage.

    Google Scholar 

  • Hagenaars, J. A., and Luijkx, R. (1987), “Manual for LCAG,” Working Paper no. 17, Tilburg University, Department of Sociology.

    Google Scholar 

  • Hambleton, R. K., Swaminathan, H., and Rogers, H. J. (1991), Fundamentals of Item Response Theory, Newbury Park, CA: Sage.

    Google Scholar 

  • Heinen, T. (1993), Discrete Latent Variable Models,University of Tilburg Press.

    Google Scholar 

  • Henry, N. W. (1983), “Latent Structure Analysis,” pp. 497–504 in S. Kotz, and N. Johnson, eds., Encyclopedia of Statistical Sciences, Vol. 4, New York: Wiley.

    Google Scholar 

  • Hogan, D. P., Eggebeen, D. J., and Clogg, C. C. (1993), “The Structure of Intergenerational Exchanges in American Families,” American Journal of Sociology, 99, 1428–1458.

    Article  Google Scholar 

  • Kelderman, H. (1989), “Item Bias Detection Using Loglinear Item Response Theory,” Psychometrika, 54, 681–697.

    Article  Google Scholar 

  • Kelderman, H., and Macready, G. (1990), “The Use of Loglinear Models for Assessing Item Bias Across Manifest and Latent Examinee Groups,” Journal of Educational Measurement, 27, 307–327.

    Article  Google Scholar 

  • Knoke, D., and Burke, P. J. (1980), Log-Linear Models, Beverly Hills, CA: Sage.

    Google Scholar 

  • Langeheine, R. (1988), “New Developments in Latent Class Theory,” pp. 77–108 in R. Langeheine, and J. Rost, eds., Latent Trait and Latent Class Models, New York: Plenum.

    Chapter  Google Scholar 

  • Langeheine, R., and Pol, F. van de (1990), “A Unifying Framework for Markov Modeling in Discrete Space and Discrete Time,” Sociological Methods and Research, 18, 416–441.

    Article  Google Scholar 

  • Langeheine, R., and Rost, J., eds. (1988), Latent Trait and Latent Class Models, New York: Plenum.

    Google Scholar 

  • Lazarsfeld, P. F. (1950), “The Logical and Mathematical Foundation of Latent Structure Analysis,” pp. 362–412 in E. A. Suchman, P. F. Lazarsfeld, S. A. Stan, and J. A. Clausen, eds., Studies in Social Psychology in World War II, Vol. 4. Measurement and Prediction, Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Lazarsfeld, P. F., and Henry, N. W. (1968), Latent Structure Analysis, Boston: Houghton Mifflin.

    Google Scholar 

  • Lindsay, B., Clogg, C. C., and Grego, J. M. (1991), “Semi-parametric Estimation in the Rasch Model and Related Exponential Response Models, Including a Simple Latent Class Model for Item Analysis,” Journal of the American Statistical Association, 86, 96–197.

    Article  Google Scholar 

  • Little, R. J. A., and Rubin, D. B. (1987), Statistical Analysis With Missing Data, New York: Wiley.

    Google Scholar 

  • Macready, G. B., and Dayton, C. M. (1977), “The Use of Probabilistic Models in the Assessment of Mastery,” Journal of Educational Statistics, 2, 99–120.

    Article  Google Scholar 

  • Marsden, P. V. (1985), “Latent Structure Models for Relationally Defined Social Classes,” American Journal of Sociology, 90, 1002–1021.

    Article  Google Scholar 

  • McCutcheon, A. L. (1987), Latent Class Analysis, Beverly Hills, CA: Sage.

    Google Scholar 

  • Mislevy, R. J., and Verhelst, N. (1990), “Modeling Item Responses When Different Subjects Employ Different Solution Strategies,” Psychometrika, 55, 195–215.

    Article  Google Scholar 

  • Mooijaart, A., and van der Heijden, P. G. M. (1992), “The EM Algorithm for Latent Class Analysis With Equality Constraints,” Psychometrika, 57, 261–270.

    Article  Google Scholar 

  • Muraki, E. (1992), “A Generalized Partial Credit Model: Application of an EM Algorithm,” Applied Psychological Measurement, 16, 159–176.

    Article  Google Scholar 

  • Palmgren, J., and Ekholm, A. (1985), “GLIM for Latent Class Analysis,” pp. 128–136 in R. Gilchrist, B. Francis, and J. Whittaker, eds., Generalized Linear Models: Proceedings of the GLIM 85 Conference, Berlin: Springer-Verlag.

    Chapter  Google Scholar 

  • Proctor, C. H. (1970), “A Probabilistic Formulation and Statistical Analysis of Guttman Scaling,” Psychometrika, 35, 73–78.

    Article  Google Scholar 

  • Rindskopf, D., and Rindskopf, W. (1986), “The Value of Latent Class Analysis in Medical Diagnosis,” Statistics in Medicine, 5, 21–27.

    Article  PubMed  Google Scholar 

  • Rost, J. (1988), “Rating Scale Analysis with Latent Class Models,” Psychometrika, 53, 327–348.

    Article  Google Scholar 

  • Rost, J. (1988), LACORD-Latent Class Analysis for Ordinal Variables, Kiel, Germany: Institute for Science Education.

    Google Scholar 

  • Rost, J. (1990), “Rasch Models in Latent Classes: An Integration of Two Approaches to Item Analysis,” Applied Psychological Measurement, 14, 271–282.

    Article  Google Scholar 

  • Rost, J. (1991), “A Logistic Mixture Distribution Model for Polychotomous Item Responses,” British Journal of Mathematical and Statistical Psychology, 44, 75–92.

    Article  Google Scholar 

  • Rubin, D. B. (1987), Multiple Imputation for Nonresponse in Surveys, New York: Wiley.

    Book  Google Scholar 

  • Rudas, T., Clogg, C. C., and Lindsay, B. L. (1994), “A New Index of Fit Based on Mixture Methods for the Analysis of Contingency Tables,” Journal of the Royal Statistical Society, Ser. B, forthcoming.

    Google Scholar 

  • Schwartz, J. E. (1985), “The Neglected Problem of Measurement Error in Categorical Data,” Sociological Methods and Research, 13, 435–66.

    Article  Google Scholar 

  • Schwartz, J. E. (1986), “A General Reliability Model for Categorical Data, Applied to Guttman Scales and Current Status Data,” pp. 79–119 in N. B. Tuma, ed., Sociological Methodology 1986, San Francisco: Jossey-Bass.

    Google Scholar 

  • Shockey, J. W. (1988), “Adjusting for Response Error in Panel Surveys: A Latent Class Approach,” Sociological Methods and Research, 17, 65–92.

    Article  Google Scholar 

  • Tanner, M. A. (1991), Tools for Statistical Inference: Observed Data and Data Augmentation Methods, New York: Springer-Verlag.

    Book  Google Scholar 

  • Tanner, M. A. (1985), “Modeling Agreement Among Raters,” Journal of the American Statistical Association, 80, 175–180.

    Article  Google Scholar 

  • Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985), Statistical Analysis of Finite Mixture Distributions, New York: Wiley.

    Google Scholar 

  • Tjur, T. (1982), “A Connection Between Rasch’s Item Analysis Model and a Multiplicative Poisson Model,” Scandinavian Journal of Statistics, 9, 23–30.

    Google Scholar 

  • Tuch, S. A. (1983), “Analyzing Recent Trends in Prejudice Toward Blacks: Insights from Latent Class Models,” American Journal of Sociology, 87, 130–142.

    Article  Google Scholar 

  • Uebersax, J. S. (1993), “Statistical Modeling of Expert Ratings on Medical Treatment Appropriateness,” Journal of the American Statistical Association, 88, 421–427.

    Article  Google Scholar 

  • Uebersax, J. S., and Grove, W. M. (1990), “Latent Class Analysis of Diagnostic Agreement,” Statistics in Medicine, 9, 559–572.

    Article  PubMed  Google Scholar 

  • van de Pol, F. J. R., and Langeheine, R. (1990), “Mixed Markov Latent Class Models,” pp. 213–247 in C. C. Clogg, ed., Sociological Methodology 1990, Oxford: Basil Blackwell.

    Google Scholar 

  • van de Pol, F. J. R., Langeheine, R., and Jong, W. de (1991), “PANMARK User Manual: Panel Analysis Using Markov Chains,” Version 2. 2, Netherlands Central Bureau of Statistics, Voorburg.

    Google Scholar 

  • van der Heijden, P. G. M., Mooijaart, A., and de Leeuw, J. (1992), “Constrained Latent Budget Analysis,” Pp. 279–320 in P. Marsden, ed., Sociological Methodology 1992, Oxford: Blackwell.

    Google Scholar 

  • Whittaker, J. (1990), Graphical Models in Applied Multivariate Analysis, New York: Wiley.

    Google Scholar 

  • Winship, C. M., and Mare, R. D. (1989), “Loglinear Models with Missing Data: A Latent Class Approach,” pp. 331–368 in C. C. Clogg, ed., Sociological Methodology 1989, Oxford: Blackwell.

    Google Scholar 

  • Young, M. A. (1983), “Evaluating Diagnostic Criteria: A Latent Class Paradigm,” Journal of Psychiatric Research, 17, 285–296.

    Article  Google Scholar 

  • Young, M. A., Tanner, M. A., and Meltzer, H. Y. (1982), “Operational Definitions of Schizophrenia: What Do They Identify?” Journal of Nervous and Mental Disease, 170, 443–447.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clogg, C.C. (1995). Latent Class Models. In: Arminger, G., Clogg, C.C., Sobel, M.E. (eds) Handbook of Statistical Modeling for the Social and Behavioral Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1292-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1292-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1294-7

  • Online ISBN: 978-1-4899-1292-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics