Homojunction Field-Effect and Bipolar Transistors

  • Juras Požela
Part of the Microdevices book series (MDPF)

Abstract

Homojunction transistors are transistors that have been fabricated from a pure semiconductor. There are, in principle, two ways to increase the operating speed of homojunction field-effect and bipolar transistors: reduce the length of the transistor’s operating area (gate, emitter, base) to the greatest possible extent and use semiconductors which have high carrier mobility and maximum drift velocity.

Keywords

Microwave Mercury Cadmium Recombination GaAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Yoshii, M. Tomizawa, and K. Yokoyama, “Accurate modeling for submicrometer-gate Si and GaAs MESFETs using two-dimensional particle simulation,” IEEE Trans. Electron Dev., ED-30, No. 10, 1376–1380 (1983).ADSGoogle Scholar
  2. 2.
    T. J. Maloney and J. Frey, “Transient and steady-state electron transport properties of GaAs and InP,” J. Appl. Phys., 48, No. 2, 781–787 (1977).ADSGoogle Scholar
  3. 3.
    K. Blotekjaer, “Transport equations for electrons in two-valley semiconductors,” IEEE Trans. Electron Dev., ED-17, No. 1, 38–47 (1970).Google Scholar
  4. 4.
    R. K. Cook and J. Frey, “Two-dimensional numerical simulation of energy transport effects in Si and GaAs MESFETs,” IEEE Trans. Electron Dev., ED-29, No. 6, 970–977 (1982).Google Scholar
  5. 5.
    W. R. Curtice and Y. H. Yun, “A temperature model for the GaAs MESFET,” IEEE Trans. Electron Dev., ED-28, No. 8, 954–962 (1981).Google Scholar
  6. 6.
    R. Stratton, “Diffusion of hot and cold electrons in semiconductor barriers,” Phys. Rev., 126, No. 6, 2002–2014 (1962).ADSGoogle Scholar
  7. 7.
    K. Yamasaki and M. Hirayama, “Determination of effective saturation velocity in n + self-aligned GaAs MESFETs with submicrometer gate lengths,” IEEE Trans. Electron Dev., ED-33, No. 11, 1652–1657 (1986).Google Scholar
  8. 8.
    R. Stenzel, H. Elschner, and R. Spallek, “Numerical simulation of GaAs MESFETs including velocity overshoot,” Solid-State Electron., 30, No. 8, 873–877 (1987).ADSGoogle Scholar
  9. 9.
    M. B. Das, “Millimeter-wave performance of ultrasubmicrometer-gate field-effect transistors: a comparison of MODFET, MESFET, and PBT structures,” IEEE Trans. Electron. Dev., ED-34, No. 7, 1429–1440 (1987).ADSGoogle Scholar
  10. 10.
    E. Johnson and A. Rose, “Simple general analysis of amplifier devices with emitter, control and collector functions,” Proc. IRE, 47, No. 3, 407–418 (1959).Google Scholar
  11. 11.
    M. B. Das, “Charge-control analysis of MOS and junction-gate field-effect transistors,” Proc. IEEE (London), 113, 1240–1248 (1966).Google Scholar
  12. 12.
    M. F. Abusaid and J. R. Hauser, “Calculations of high-speed performance for submicrometer ion-implanted GaAs MESFET devices,” IEEE Trans. Electron Dev., ED-33, No. 7, 913–918 (1986).ADSGoogle Scholar
  13. 13.
    P. Godts, J. Vanbremeersch, E. Constant, et al., “Realization of very high transconductance GaAs MESFETs,” Electron Lett., 24, No. 12, 775–776 (1988).ADSGoogle Scholar
  14. 14.
    P. C. Chao, P. M. Smith, K. H. G. Duh, et al., “60 GHz GaAs low-noise MESFETs by molecular beam epitaxy,” Presented at the Device Research Conf., Amherst, MA, Session IVA, Paper No. 8, June 24, 1986.Google Scholar
  15. 15.
    S. I. Long, B. M. Welch, R. Tsukka, et al., “Super high-speed GaAs integrated circuits,” TIIER, 70, No. 1, 44–58 (1982).Google Scholar
  16. 16.
    R. S. Eden, “A comparison of the prospects for different GaAs devices in super high-speed VLSI,” TIIER, 70, No. 1, 8–17 (1982).MathSciNetGoogle Scholar
  17. 17.
    G. W. Taylor and R. J. Bayruns, “A comparison of Si MOSFET and GaAs MESFET enhancement/depletion logic performance,” IEEE Trans. Electron Dev., ED-32, No. 9, 1633–1641 (1985).Google Scholar
  18. 18.
    P. C. Chao, P. M. Smith, U. K. Mishra, et al., “Quarter-micron low-noise high-electron mobility transistors,” Proc. IEEE Cornell Conf. Advanced Concepts in High-Speed Semicond. Dev. and Circuits (July 29-31, 1985) pp. 163-171.Google Scholar
  19. 19.
    B. Kim, H. Q. Tserng, and H. D. Shih, Proc. IEEE Cornell Conf. Advanced Concepts in High-Speed Semicond. Dev. and Circuits (July 29-31, 1985) pp. 181-188.Google Scholar
  20. 20.
    P. M. Smith, P. C. Chao, U. K. Mishra, et al., “Millimeter-wave power performance of 0.25 μm HEMTs and GaAs FETs,” Proc. IEEE Cornell Conf. Advanced Concepts in High-Speed Semicond. Dev. and Circuits (July 29-31, 1985) pp. 189-198.Google Scholar
  21. 21.
    B. Kim, M. Wurtele, H. D. Shih, et al., “GaAs power MESFET with 41-percent power added efficiency at 35 GHz,” IEEE Electron Dev. Lett., EDL-9, No. 2, 57–58 (1988).ADSGoogle Scholar
  22. 22.
    Y. C. Pao, W. Ou, and J. S. Harris, “< 110 >-oriented GaAs MESFETs,” IEEE Electron Dev. Lett., EDL-9, No. 3, 119–121 (1988).ADSGoogle Scholar
  23. 23.
    U. K. Mishra et al., “MBE grown GaAs MESFETs with ultra-high g m and f T,” IEDM Tech. Dig., 829-831 Dec. 7-1 (1986).Google Scholar
  24. 24.
    R. A. Sadler and L. F. Eastman, “High-speed logic at 300 K with self-aligned submicrometer-gate GaAs MESFETs,” IEEE Electron Dev. Lett., EDL-4, No. 7, 215–217 (1983).ADSGoogle Scholar
  25. 25.
    M. Feng, H. Kanber, V. K. Eu, et al., “Ultrahigh frequency operation of ion-implanted GaAs metal-semiconductor field-effect transistors,” Appl. Phys. Lett., 44, No. 2, 231–233 (1984).ADSGoogle Scholar
  26. 26.
    M. S. Gupta, O. Pitzalis, Jr., S. E. Rosenbaum, et al., “Microwave noise characterization of GaAs MESFETs: Evaluation by on-wafer low-frequency output noise current measurement,” IEEE Trans. Microwave Theory and Techniques, MTT-35, No. 12, 1208–1218 (1987).ADSGoogle Scholar
  27. 27.
    K. Wang and S. Wang, “State-of-the-art ion-implanted low-noise GaAs MESFETs and high-performance monolithic amplifiers,” IEEE Trans. Electron Dev., ED-34, No. 12, 2610–2615 (1987).Google Scholar
  28. 28.
    J. A. Calviello, P. R. Bie, R. J. Pomian, et al., “A novel GaAs Schottky-drain power FET for microwave application,” IEEE Trans. Electron Dev., ED-32, No. 12, 2844–2847 (1985).ADSGoogle Scholar
  29. 29.
    K. Heime, H. Dämbkes, and W. Brockerhoff, “GaAs MESFET with a highly doped channel,” in: Extended Abstracts of the 16th (1984 International) Conference on Solid State Devices and Materials. Kobe (Japan) (1984), pp. 375-378.Google Scholar
  30. 30.
    J. G. Giglio and J. R. J. Giglio, “Projected frequency limits of GaAs MESFETs,” IEEE Trans. Microwave Theory Tech., 39, No. 1, 142–146 (1991).ADSGoogle Scholar
  31. 31.
    B. Kim, H. Q. Tserng, and H. D. Shih, “Millimeter-wave GaAs FETs prepared by MBE,” IEEE Electron Dev. Lett., EDL-6, No. 1, 1–2 (1985).ADSGoogle Scholar
  32. 32.
    M. Kobiki, Y. Mitsui, Y. Sasaki, et al., “A Ka-band GaAs power MMIC,” in: IEEE 1985 Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest, pp. 31-34.Google Scholar
  33. 33.
    B. Kim, H. M. Macksey, H. Q. Tserng, et al., “Millimeter-wave monolithic GaAs power FET amplifier,” in: 1986 GaAs IC Symposium Tech. Digest, pp. 61-63.Google Scholar
  34. 34.
    B. Kim, H. M. Macksey, H. Q. Tserng, et al., “Mm-wave monolithic GaAs power FET amplifiers,” Microwave J., 30, No. 1, 153–163 (1987).ADSGoogle Scholar
  35. 35.
    G. C. Taylor, M. Eron, D. W. Bechtle, et al., “High-efficiency 35 GHz GaAs MESFETs,” IEEE Trans. Electron Dev., ED-34, No. 6, 1259–1262 (1987).ADSGoogle Scholar
  36. 36.
    H. Q. Tserng and B. Kim, “O-band GaAs MESFET oscillator with 30% efficiency,” Electron. Lett., 24, No. 2, 83–84 (1988).ADSGoogle Scholar
  37. 37.
    R. P. Smith, D. A. Seielstad, P. Ho, et al., “Impulse-doped GaAs power FETs for high efficiency operation,” Electron. Lett., 24, No. 10, 597–598 (1988).ADSGoogle Scholar
  38. 38.
    H. Q. Tserng and B. Kim, “High-efficiency β-band GaAs FET oscillator,” Electron. Lett., 20, 297–298 (1984).ADSGoogle Scholar
  39. 39.
    H. Q. Tserng and B. Kim, “110 GHz GaAs FET oscillator,” Electron. Lett., 21, No. 5, 178–179 (1985).ADSGoogle Scholar
  40. 40.
    H. Q. Tserng and B. Kim, “A 115 GHz monolithic GaAs FET oscillator,” in: 1985 GaAs IC Symposium Tech. Digest, pp. 11-13.Google Scholar
  41. 41.
    D. H. Evans, “High-efficiency Ka-band MESFET oscillators,” Electron. Lett., 21, No. 7, 254–255 (1985).ADSGoogle Scholar
  42. 42.
    M. I. Aksun, H. Morkoç, L. F. Lester, et al., “Performance of quarter-micron GaAs metal-semiconductor field-effect transistors on Si substrates,” Appl. Phys. Lett., 49, No. 24, 1654–1655 (1986).ADSGoogle Scholar
  43. 43.
    R. J. Fischer, N. Chand, W. P. Kopp, et al., “A dc and microwave comparison of GaAs MESFETs on GaAs and Si structures,” IEEE Trans. Electron Dev., ED-33, No. 2, 206–213 (1986).ADSGoogle Scholar
  44. 44.
    S. Fang, K. Adomi, S. Iyer, et al., “Gallium arsenide and other compound semiconductors on silicon,” J. Appl Phys., 68, No. 7, R31–R58 (1990).ADSGoogle Scholar
  45. 45.
    R. Fischer and H. Morkoç, “III–V semiconductors on Si substrates,” in: Extended Abstracts of the 18th (1986 International) Conference on Solid State Devices and Materials, Tokyo (1986), pp. 105-108.Google Scholar
  46. 46.
    E. Constant, N. Caglio, J. Chevalier, et al., “Fabrication of a new type of field-effect transistor using neutralization of shallow donors by atomic hydrogen in n-GaAs(Si),” Electron. Lett., 23, No. 16, 841–843 (1987).ADSGoogle Scholar
  47. 47.
    J. Chevalier, W. C. Dautremont-Smith, W. C. Tu, et al., “Donor neutralization in GaAs(Si) by atomic hydrogen,” Appl. Phys. Lett., 47, No. 2, 108–110 (1985).ADSGoogle Scholar
  48. 48.
    A. Jalil, J. Chevalier, J. C. Pesant, et al., “Infrared spectroscopic evidence of silicon-related hydrogen complexes in hydrogenated n-type GaAs doped with silicon,” Appl. Phys. Lett., 50, No. 8, 439–441 (1987).ADSGoogle Scholar
  49. 49.
    A. Jalil, J. Chevalier, R. Azoulay, et al., “Electron mobility studies of the donor neutralization by atomic hydrogen in GaAs doped with silicon,” J. Appl. Phys., 59, No. 11, 3774–3777 (1986).ADSGoogle Scholar
  50. 50.
    K.-F. Berggrent and D. J. Newson, “A novel basis set for quantum calculations in MESFET and JFET devices,” Semicond. Sci. Technol, 1, No. 4, 246–255 (1986).ADSGoogle Scholar
  51. 51.
    G. Roos and K.-F. Berggrent, “Quantum limit of a narrow-channel GaAs metal-semiconductor field-effect transistor,” J. Appl. Phys., 62, No. 11, 4625–4628 (1987).ADSGoogle Scholar
  52. 52.
    V. Denis and J. Požela, Hot Electrons [in Russian], Mintis, Vilnius (1971).Google Scholar
  53. 53.
    F. Januschewski and H. J. Erzgräber, “Modeling the influence of hot electrons on the transfer characteristic of short-channel MOSFETs,” Phys. St. Sol. (a), 99, No. 2, 649–656 (1987).ADSGoogle Scholar
  54. 54.
    J. H. Abeles, C. W. Tu, S. A. Schwarz, et al., “Nonlinear high-frequency response of GaAs metal-semiconductor field-effect transistors,” Appl. Phys. Lett., 48, No. 23, 1620–1622 (1986).ADSGoogle Scholar
  55. 55.
    J. H. Abeles, R. F. Leheny, G. K Chang, et al., “Experimental measurement of a high-field dipole in GaAs field-effect transistors,” Appl. Phys. Lett., 49, No. 20, 1387–1389 (1986).ADSGoogle Scholar
  56. 56.
    R. E. Thorne, S. L. Su, R. J. Fischer, et al., “Analysis of camel-gate FETs (CAMFETs),” IEEE Trans. Electron Dev., ED-30, No. 3, 212–216 (1983).Google Scholar
  57. 57.
    R. Anholt and T. W. Sigmon, “Mechanism of EL2 effects on GaAs field-effect transistor threshold voltages,” J. Appl. Phys., 62, No. 9, 3995–3997 (1987).ADSGoogle Scholar
  58. 58.
    P. Dobrilla and J. S. Blakemore, “Mapping of GaAs wafers by quantitative infrared microscopy,” J. Appl. Phys., 61, No. 4, 1442–1448 (1987).ADSGoogle Scholar
  59. 59.
    C. H. Chen, M. Shur, and A. Peczalski, “Trapping-enhanced temperature variation of the threshold voltage of GaAs MESFETs,” IEEE Trans. Electron Dev., ED-33, No. 6, 792–797 (1986).Google Scholar
  60. 60.
    S. Miyazawa and K. Wada, “Mechanisms for the threshold voltage shift of a GaAs field-effect transistor around dislocations,” Appl. Phys. Lett., 48, No. 14, 905–907 (1986).ADSGoogle Scholar
  61. 61.
    R. Khanna and M. B. Das, “Roles of shallow and deep electron traps causing backgating in GaAs metal-semiconductor field-effect transistors,” Appl. Phys. Lett., 48, No. 14, 937–939 (1986).ADSGoogle Scholar
  62. 62.
    K. Y. Lee, M. Al-Mudares, S. P. Beaumont, et al., “Very-high transconductance short-channel GaAs MESFETs with Ga0.3Al0.7As buffer layer” Electron. Lett., 23, No. 1, 11–12 (1987).ADSGoogle Scholar
  63. 63.
    B. Kim, M. Wurtele, H. D. Shih, et al., “High-performance GaAs power MESFET with AlGaAs buffer layer,” Electron. Lett., 23, No. 19, 1008–1010 (1987).Google Scholar
  64. 64.
    P. A. Folkes, “Measurement of the low-field electron mobility and compensation ratio profiles in GaAs field-effect transistors,” Appl. Phys. Lett., 48, No. 6, 431–433 (1986).ADSGoogle Scholar
  65. 65.
    P. A. Folkes, “Characteristics and mechanism of 1/f noise in GaAs Schottky barrier field-effect transistors,” Appl. Phys. Lett., 48, No. 5, 344–346 (1986).ADSGoogle Scholar
  66. 66.
    J. S. Barrera and R. J. Archer, “InP Schottky-gate field-effect transistors,” IEEE Trans. Electron Dev., ED-22, No. 11, 1023–1030 (1975).ADSGoogle Scholar
  67. 67.
    S. Loualiche, H. L’Haridon, E. LeCorre, et al., “Schottky and field-effect transistor fabrication on InP and GalnAs,” Appl. Phys. Lett., 52, No. 7, 540–542 (1988).ADSGoogle Scholar
  68. 68.
    D. L. Lile, D. A. Collins, L. G. Meiners, et al., “n-channel inversion-mode InP MISFET,” Electron. Lett., 14, No. 20, 657–659 (1978).Google Scholar
  69. 69.
    T. Kawakami and M. Okamura, “InP/Al2O3 n-channel inversion-mode MISFETs using sulphur-diffused source and drain,” Electron. Lett., 15, No. 16, 502–503 (1979).ADSGoogle Scholar
  70. 70.
    L. F. Messick, “A high-speed monolithic InP MISFET integrated logic inverter,” IEEE Trans. Electron Dev., ED-28, No. 2, 218–221 (1981).ADSGoogle Scholar
  71. 71.
    L. F. Messick, “Low-power high-speed InP MISFET direct-coupled FET logic,” IEEE Trans. Electron Dev., ED-31, No. 6, 763–766 (1984).ADSGoogle Scholar
  72. 72.
    A. Antreasyan, P. A. Garbinski, V. D. Mattera, et al., “High-speed operation of InP metal-insulator-semiconductor field-effect transistors grown by chloride vapor phase epitaxy,” Appl. Phys. Lett., 51, No. 14, 1097–1099 (1987).ADSGoogle Scholar
  73. 73.
    M. Matsui, Y. Hirayama, and T. Sugano, “InP MISFETs with plasma anodic Al2O3 and interlayed native oxide gate insulators,” IEEE Electron Dev. Lett. EDL-4, No. 9, 308–310 (1983).Google Scholar
  74. 74.
    T. Sawada, S. Itagaki, H. Hasegawa, et al., “InP MISFETs with Al2O3 / native oxide double-layer gate insulators,” IEEE Trans. Electron Dev., ED-33, No. 8, 1038–1043 (1984).ADSGoogle Scholar
  75. 75.
    Y. Hirota, M. Okamura, T. Hisaki, et al., “Temperature dependence of electron mobility for inversion-mode InP metal-insulator-semiconductor field-effect transistors,” J. Appl. Phys., 61, No. 1, 277–283 (1987).ADSGoogle Scholar
  76. 76.
    Y. Hirota, T. Hisaki, and O. Mikami, “Inversion-mode InP MISFET using a photochemical phosphorus nitride gate insulator,” Electron. Lett., 21, No. 16, 690–691 (1985).ADSGoogle Scholar
  77. 77.
    K. Oigawa, S. Uekusa, Y. Sugiyama, et al., “Self-aligned inversion-mode InP MISFET,” Jpn. J. Appl. Phys., 26, No. 10, 1719–1721 (1987).ADSGoogle Scholar
  78. 78.
    K. P. Pande and D. Gutierrez, “Channel mobility enhancement in InP metal-insulator-semiconductor field-effect transistors,” Appl. Phys. Lett., 46, No. 4, 416–418 (1985).ADSGoogle Scholar
  79. 79.
    L. G. Meiners, A. R. Clawson, and R. Nguyen, “InP metal-semiconductor field-effect transistors with mercury and cadmium gates,” Appl. Phys. Lett., 49, No. 6. 340–341 (1986).ADSGoogle Scholar
  80. 80.
    L. D. Pressman, S. R. Forrest, W. A. Bonner, et al., “Noninvasive analysis of InP surfaces using Hg-InP Schottky barrier diodes,” Appl. Phys. Lett., 41, No. 10, 969–971 (1982).ADSGoogle Scholar
  81. 81.
    C. J. Sa and L. G. Meiners, “Schottky barrier heights of Hg, Cd, and Zn on n-type InP (100),” Appl. Phys. Lett., 48, No. 26, 1796–1798 (1986).ADSGoogle Scholar
  82. 82.
    C. Fan and P. K. L. Yu, “Self-aligned diffusion technique for n-InP JFETs,” Electron. Lett., 23, No. 19, 981–982 (1987).Google Scholar
  83. 83.
    A. Antreasyan, P. A. Garbinski, V. D. Mattera, et al., “Gigahertz logic based on InP metal-insulator-semiconductor field-effect transistors by vapor phase epitaxy,” IEEE Trans. Electron Dev., ED-34, No. 9, 1897–1901 (1987).Google Scholar
  84. 84.
    K. P. Pande, M. A. Fathimulla, D. Gutierrez, et al., “Gigahertz logic gates based on InP-MISFETs with minimal drain current drift,” IEEE Electron Dev. Lett., EDL-7, No. 7, 407–409 (1986).ADSGoogle Scholar
  85. 85.
    M. Armand, D. V. Bui, J. Chevrier, et al., “High-power InP MISFETs,” Electron. Lett., 19, No. 12, 433–434 (1983).ADSGoogle Scholar
  86. 86.
    T. Itoh and K. Ohata, “X-band self-aligned gate enhancement-mode InP MISFETs,” IEEE Trans. Electron Dev., ED-30, No. 7, 811–815 (1983).ADSGoogle Scholar
  87. 87.
    M. A. Hasse, V. M. Robbins, N. Tabatabaie, et al., “Subthreshold electron velocity-field characteristics of GaAs and In0.53Ga0.47As,” J. Appl. Phys., 57, No. 6, 2295–2298 (1985).ADSGoogle Scholar
  88. 88.
    T. Pearsall, G. Beuchet, J. P. Hirtz, et al., “Electron and hole mobilities in Ga0.47In0.53As,” Inst. Phys. Conf. Ser., 56, 639 (1981).Google Scholar
  89. 89.
    T. H. Windhorn, L. W. Cook, and G. E. Stillman, “The electron velocity-field characteristic for n-In0.53Ga0.47As at 300 K,” IEEE Electron Dev. Lett., EDL-3, No. 1, 18–20 (1982).Google Scholar
  90. 90.
    Y. Takeda, A. Sasaki, Y. Imamura, et al., “Electron mobility and energy gap of In0.53Ga0.47As on InP substrate,” J. Appl. Phys., 47, No. 12, 5405–5408 (1976).ADSGoogle Scholar
  91. 91.
    P. O’Connor, T. P. Pearsall, K. Y. Cheng, et al., “In0.53Ga0.47As FETs with insulator assisted Schottky gates,” IEEE Electron Dev. Lett., EDL-1, No. 3, 64–66 (1982).Google Scholar
  92. 92.
    L. C. Cheng, A. S. H. Liao, T. Y. Chang, et al., “Submicrometer self-aligned recessed gate InGaAs MISFET exhibiting very high transconductance,” IEEE Electron Dev. Lett., EDL-5, No. 5, 169–171 (1984).Google Scholar
  93. 93.
    M. Renaud, F. Boher, J. Schneider, et al., “Ga0.47In0.53As depletion mode MISFETs with negligible drain current drift,” Electron. Lett., 24, No. 12, 750–751 (1988).Google Scholar
  94. 94.
    C. Y. Chen, A. Y. Cho, P. A. Garbinski, et al., “Characteristics of an In0.53Ga0.47As very shallow junction gate structure grown by molecular beam epitaxy,” IEEE Electron Dev. Lett., EDL-3, No. 1, 15–17 (1980).Google Scholar
  95. 95.
    T. Y. Chang, R. F. Leheny, R. E. Nahory, et al., “Junction field-effect transistor using In0.53Ga0.47As material grown by molecular beam epitaxy,” IEEE Electron Dev. Lett., EDL-3, No. 3, 56–58 (1982).Google Scholar
  96. 96.
    R. F. Leheny, R. E. Nahory, M. A. Pollack, et al., “An In0.53Ga0.47As junction field-effect transistor,” IEEE Electron Dev. Lett., EDL-1, No. 6, 110–111 (1980).Google Scholar
  97. 97.
    L. Vescan, J. Selders, H. Krautle, et al., “Be-implanted p-n junctions in In0.53Ga0.47As,” Electron. Lett., 18, No. 12, 533–534 (1982).Google Scholar
  98. 98.
    D. Lecrosnier, L. Henry, A. LeCorbe, et al., “GaInAs junction FET fully dry etched by metal organic reactive ion etching technique,” Electron. Lett., 23, No. 24, 1254–1255 (1987).Google Scholar
  99. 99.
    Y. G. Chai and R. Yeats, “In0.53Ga0.47As submicrometer FETs grown by MBE,” IEEE Electron Dev. Lett., EDL-4, No. 7, 252–254 (1983).Google Scholar
  100. 100.
    Y. G. Chai, C. Yuen, and G. A. Zdasiuk, “Investigation of In0.53Ga0.47As for high-frequency microwave power FETs,” IEEE Trans. Electron Dev., ED-32, No. 5, 972–977 (1985).ADSGoogle Scholar
  101. 101.
    S. Bandy, C. Nishimoto, S. Hyder, et al., “Saturation velocity determination for In0.53Ga0.47As field-effect transistors,” Appl. Phys. Lett., 38, No. 10, 817–819 (1981).ADSGoogle Scholar
  102. 102.
    J. Selders, H. J. Wachs, and H. Jürgensen, “GaInAs junction FET with InP buffer layer prepared by selective ion implantation of Be and rapid thermal annealing,” Electron. Lett., 22, No. 6, 313–315 (1986).ADSGoogle Scholar
  103. 103.
    É. Adomaitis, Z. Dobrobol’skis, and A. Krotkus, “Using picosecond electrical pulses to measure the effects of hot electrons in InSb,” Lit. Fiz. Sb., 25, No. 4, 35–41 (1985).Google Scholar
  104. 104.
    T. Takahashi, O. Sugiura, I. Watanabe, et al., “SiO2/native-oxide double-gate InSb MOSFETs,” Electron. Lett., 21, No. 12, 545–547 (1985).Google Scholar
  105. 105.
    A. Matulenis, J. Požela, and A. Reklaitis, “Dynamics of electron heating in a nonparabolic zone in polar semiconductors,” FTP, 10, No. 2, 280–285 (1976).Google Scholar
  106. 106.
    D. L. Dreifus, R. M. Kolbas, K. A. Harris, et al., “CdTe metal-semiconductor field-effect transistors,” Appl. Phys. Lett., 51, No. 12, 931–933 (1987).ADSGoogle Scholar
  107. 107.
    R. W. Heyes, “High-mobility FET in strained silicon,” IEEE Trans. Electron Dev.y ED-33, No. 6, 863 (1986).Google Scholar
  108. 108.
    A. Cappy, B. Carnez, R. Fauquembergues, et al., “Comparative potential performance of Si, GaAs, GaInAs, InAs submicrometer-gate FETs,” IEEE Trans. Electron Dev., 27, No. 11, 2158–2160 (1980).ADSGoogle Scholar
  109. 109.
    S. Yoshida, H. Daimon, M. Yamanaka, et al., “Schottky-barrier field-effect transistors of 3C-SiC,” J. Appl. Phys., 60, No. 8, 2989–2991 (1986).ADSGoogle Scholar
  110. 110.
    M. J. Powell, “Material properties controlling the performance of amorphous silicon thin-film transistors,” in: Proc. Materials Res. Society Symp., Vol. 33, M. J. Thompson (ed.), North-Holland, New York (1984), pp. 259–273.Google Scholar
  111. 111.
    Y. Nara, Y. Kudou, and M. Matsumura, “Application of amorphous-silicon field-effect transistors in three-dimensional integrated circuits,” Jpn. J. Appl. Phys., 22, No. 6, L370–L372 (1983).ADSGoogle Scholar
  112. 112.
    F. Okumura and S. Kaneko, “Amorphous Si:H linear image sensor operated by a-Si:H TFT array,” in: Proc. Materials Res. Society Symp., Vol. 33, M. J. Thompson (ed.), North-Holland, New York (1984), pp. 275–280.Google Scholar
  113. 113.
    M. Matsumura and Y. Nara, “High-performance amorphous-silicon field-effect transistors,” J. Appl. Phys., 51, No. 12, 6443–6444 (1980).ADSGoogle Scholar
  114. 114.
    M. J. Thompson, N. M. Johnson, M. D. Moyer, et al., “Thin-film transistors on a-Si:H,” IEEE Trans. Electron Dev., ED-29, No. 10, 1643–1646 (1982).Google Scholar
  115. 115.
    C. Hyun, M. S. Shur, M. Hack, et al., “Above threshold characteristics of amorphous silicon alloy thin-film transistors,” Appl. Phys. Lett., 45, No. 11, 1202–1203 (1984).ADSGoogle Scholar
  116. 116.
    M. Shur and M. Hack, “Physics of amorphous silicon based alloy field-effect transistors,” J. Appl. Phys., 55, No. 10, 3831–3842 (1984).ADSGoogle Scholar
  117. 117.
    K. Y. Chung and G. W. Neudeck, “Analytical modeling of a-Si:H thin-film transistors,” J. Appl. Phys., 62, No. 11, 4617–4624 (1987).ADSGoogle Scholar
  118. 118.
    G. W. Neudeck, H. F. Bare, and K. Y. Chung, “Modeling of ambipolar a-Si:H thin-film transistors,” IEEE Trans. Electron Dev., ED-34, No. 2, 344–349 (1987).ADSGoogle Scholar
  119. 119.
    M. Shur, C. Hyun, and M. Hack, “New high field-effect mobility regimes of amorphous silicon alloy thin-film transistor operation,” J. Appl. Phys., 59, No. 7, 2488–2497 (1986).ADSGoogle Scholar
  120. 120.
    H. Pfleiderer, “Elementary ambipolar field-effect transistor model,” IEEE Trans. Electron Dev., ED-33, No. 1, 145–147 (1986).Google Scholar
  121. 121.
    H. Pfleiderer, W. Kusian, and B. Bullemer, “An ambipolar amorphous-silicon field-effect transistor,” Siemens Forshungs-Entwicklungaber, 14, No. 3, 114–119 (1985).ADSGoogle Scholar
  122. 122.
    K. Hiranaka, T. Yoshimura, and T. Yamaguchi, “Influence of a-SiNx:H gate insulator on an amorphous silicon thin-film transistor,” J. Appl. Phys., 62, No. 5, 2129–2135 (1987).ADSGoogle Scholar
  123. 123.
    R. E. I. Schropp, J. W. C. Veltkamp, J. Snijder, et al., “On the quality of contacts in a-Si:H staggered electrode thin-film transistors,” IEEE Trans. Electron Dev., ED-32, No. 9, 1757–1760 (1985).Google Scholar
  124. 124.
    A. R. Hepburn, J. M. Marshall, C. Main, et al., “Metastable defects in amorphous-silicon thin-film transistors,” Phys. Rev. Lett., 56, No. 20, 2215–2218 (1986).ADSGoogle Scholar
  125. 125.
    R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous-silicon thin-film transistors,” Appl. Phys. Lett., 50, No. 4, 185–187 (1987).ADSGoogle Scholar
  126. 126.
    M. J. Powell, C. van Berkel, I. D. French, et al., “Bias dependence of instability mechanism in amorphous silicon thin-film transistors,” Appl. Phys. Lett., 51, No. 16, 1242–1244 (1987).ADSGoogle Scholar
  127. 127.
    U. Yasutaka and M. Masakiyo, “Proposed planar-type amorphous-silicon MOS transistors,” Jpn. J. Appl. Phys., 24, No. 10, 812–814 (1985).Google Scholar
  128. 128.
    P. Yan, N. N. Lichtin, and D. L. Morel, “Amorphous silicon, germanium, and silicon-germanium alloy thin-film transistor performance and evaluation,” Appl. Phys. Lett., 50, No. 19, 1367–1369 (1987).ADSGoogle Scholar
  129. 129.
    M. Ueda, M. Hirose, and Y. Osaka, “Amorphous silicon static induction transistor,” Jpn. J. Appl Phys., 24, No. 4, 467–471 (1985).ADSGoogle Scholar
  130. 130.
    D. J. Bartelink, “Potential applications of polysilicon as an electronic-device material,” in: Grain Boundaries in Semiconductors, H. J. Leamy, G. E. Puke, and C. H. Seager (eds.), North-Holland (1982), pp. 249-260.Google Scholar
  131. 131.
    T. Oshima, T. Nogushi, and H. Hayashi, “A super thin film transistor in advanced poly Si film,” Jpn. J. Appl. Phys., 25, No. 4, L291–L293 (1986).ADSGoogle Scholar
  132. 132.
    K. T.-Y. Kung and R. Reif, “Polycrystalline Si thin-film transistors fabricated at ≤ 800° C: Effects of grain size and {100} fiber texture,” J. Appl. Phys., 62, No. 4, 1503–1509 (1987).ADSGoogle Scholar
  133. 133.
    D. B. Meakin, P. A. Coxon, P. Migliorato, et al., “High-performance thin-film transistors from optimized polycrystalline silicon films,” Appl. Phys. Lett., 50, No. 26, 1894–1896 (1987).ADSGoogle Scholar
  134. 134.
    B. Loisel, Y. Chouan, N. Pedrono, et al., “Low-temperature process for high-mobility polysilicon TFTs,” Electron. Lett., 23, No. 6, 288–289 (1987).Google Scholar
  135. 135.
    T. Serikawa, S. Shirai, A. Okamoto, et al., “A model of current-voltage characteristics in polycrystalline silicon thin-film transistors,” IEEE Trans. Electron Dev., ED-34, No. 2, 321–324 (1987).Google Scholar
  136. 136.
    J. Levinson, F. R. Shepherd, P. J. Scanlon, et al., “Conductivity behavior in polycrystalline semiconductor thin film transistors,” J. Appl. Phys., 53, No. 2, 1193–1202 (1982).ADSGoogle Scholar
  137. 137.
    J. G. Fossum and A. Oniz-Conde, “Effects of grain boundaries on the channel conductance of SOI MOSFETs,” IEEE Trans. Electron Dev., ED-30, No. 8, 933–940 (1983).ADSGoogle Scholar
  138. 138.
    J.-P. Colinge, H. Morel, and J. P. Chante, “Field-effect in large grain polycrystalline silicon,” IEEE Trans. Electron Dev., ED-30, No. 3, 197–201 (1983).Google Scholar
  139. 139.
    J. C. Anderson, “Theory of the thin film transistor,” Thin Solid Films, 38, No. 2, 151–161 (1976).ADSGoogle Scholar
  140. 140.
    H. Baudrand, E. Hamadto, and J. L. Amalric, “An experimental and theoretical study of polycrystalline thin film transistors,” Solid-State Electron, 24, No. 12, 1093–1098 (1981).ADSGoogle Scholar
  141. 141.
    D. P. Vu, “Transient effect in thinned silicon-on-insulator devices,” Electron, Lett., 22, No. 8, 412–413 (1986).Google Scholar
  142. 142.
    K. Throngnumchai, K. Asada, and T. Sugano, “Modeling of 0.1-μm MOSFET on SOI structure using Monte Carlo simulation technique,” IEEE Trans. Electron Dev., ED-33, No. 7, 1005–1011 (1986).Google Scholar
  143. 143.
    J. P. Colinge, “Reduction of floating substrate effect in thin-film SOI MOSFETs,” Electron. Lett., 22, No. 4, 187–188 (1986).Google Scholar
  144. 144.
    S. S. Tsao, D. R. Myers, and G. K. Celler, “Gate coupling and floating-body effects in thin-film SOI MOSFETs,” Electron. Lett., 24, No. 4, 238–239 (1988).Google Scholar
  145. 145.
    J. P. Colinge, “Subthreshold slope of thin-film SOI MOSFETs,” IEEE Electron Dev. Lett., EDL-7, No. 4, 244–246 (1986).Google Scholar
  146. 146.
    H. Onoda, M. Sasaki, T. Katoh, et al., “Si-gate CMOS devices on a Si/CaF2/Si structure,” IEEE Trans. Electron Dev., ED-34, No. 11, 2280–2285 (1987).Google Scholar
  147. 147.
    H. Hirai, H. Sekiguchi, S. Miyata, et al., “Tellurium thin-film transistor deposited on polyester film having plasma polymerized films on double-layered gate insulators,” Appl. Phys. Lett., 50, No. 13, 818–820 (1987).ADSGoogle Scholar
  148. 148.
    A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett., 49, No. 18, 1210–1212 (1986).ADSGoogle Scholar
  149. 149.
    D. J. Roulston and F. Hebert, “Optimization of maximum oscillation frequency of a bipolar transistor,” Solid-State Electron., 30, No. 3, 281–282 (1987).ADSGoogle Scholar
  150. 150.
    A. Van der Ziel and T. G. M. Kleinpenning, “High-frequency response of microwave transistors,” Solid-State Electron., 30, No. 7, 771–772 (1987).Google Scholar
  151. 151.
    H.-M. Rein, H. Stübing, and M. Schröter, “Verification of the integral charge-control relation for high-speed bipolar transistors at high current densities,” IEEE Trans. Electron Dev., ED-32, No. 6, 1070–1076 (1985).ADSGoogle Scholar
  152. 152.
    G. M. Kull, L. W. Nagel, S.-W. Lee, et al., “A unified circuit model for bipolar transistors including quasi-saturation effects,” IEEE Trans. Electron Dev., ED-32, No. 6, 1103–1113 (1985).Google Scholar
  153. 153.
    R. G. Meyer and R. S. Muller, “Charge-control analysis of the collector-base space-charge-region contribution to bipolar transistor time constant τT,” IEEE Trans. Electron Dev., ED-34, No. 2, 450–452 (1987).Google Scholar
  154. 154.
    A. Cuthbertson, and P. Ashburn, Int. Electron. Devices Meeting Technical Digest, 1984, p. 749.Google Scholar
  155. 155.
    T. H. Ning, R. D. Isaac, P. M. Solomon, et al., “Self-aligned bipolar transistors for high-frequency performance and low-power-delay VLSI,” IEEE Trans. Electron Dev., ED-28, No. 9, 10104013 (1981).Google Scholar
  156. 156.
    T. Sakai, Y. Yamamoto, Y. Kobayashi, et al., “A 3-ns 1-kbit RAM using super self-aligned process technology,” IEEE J. Solid State Circuits, SC-16, No. 5, 424–429 (1981).Google Scholar
  157. 157.
    B. Soerowirdjo and P. Ashburn, “Effects of surface treatments on the electrical characteristics of bipolar transistors with polysilicon emitters,” Solid-State Electron., 26, No. 5, 495–498 (1983).ADSGoogle Scholar
  158. 158.
    S. S. Tan and A. G. Milnes, “Consideration of the frequency performance potential of GaAs homojunction and heterojunction n-p-n transistors,” IEEE Trans. Electron Dev., ED-30, No. 10, 1289–1294 (1983).ADSGoogle Scholar
  159. 159.
    S.-P. Lee and D. L. Pulfrey, “Modeling the dc performance of GaAs homojunction bipolar transistors,” Solid-State Electron., 29, No. 7, 713–723 (1986).ADSGoogle Scholar
  160. 160.
    T. Ashley, G. Crimes, C. T. Elliott, et al., “Bipolar transistor action in cadmium mercury telluride,” Electron. Lett., 22, No. 11, 611–613 (1986).ADSGoogle Scholar
  161. 161.
    T. Ashley, C. T. Elliott, A. M. White, et al., “Near-ambient-temperature bipolar transistor in cadmium mercury telluride,” Electron. Lett., 23, No. 24, 1280–1281 (1987).ADSGoogle Scholar
  162. 162.
    F. Hebert and D. J. Roulston, “High-frequency performance of non-conventional-geometry bipolar transistors,” Solid-State Electron., 29, No. 12, 1239–1241 (1986).ADSGoogle Scholar
  163. 163.
    R. Schummers, P. Narozny, and H. Beneking, “Strained-layer homojunction GaAs bipolar transistor with enhanced current gain,” Electron. Lett., 22, No. 17, 924–925 (1986).Google Scholar
  164. 164.
    D. Ueda, H. Takagi, G. Kano, et al., “GaAs lateral bipolar transistor with field-separated carriers,” Electron. Lett., 23, No. 17, 899–900 (1987).ADSGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Juras Požela
    • 1
  1. 1.Institute of Semiconductor PhysicsLithuanian Academy of SciencesVilniusLithuania

Personalised recommendations