Advertisement

An Analog of the Fourier Transformation for A q-Harmonic Oscillator

  • R. Askey
  • N. M. Atakishiyev
  • S. K. Suslov

Abstract

A q-version of the Fourier transformation and some of its properties are discussed.

Keywords

Harmonic Oscillator Quantum Group Infinite Product Difference Analog Commutation Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AAS]
    R. Askey, N. M. Atakishiyev and S. K. Suslov — Fourier transformations for difference analogs of the harmonic oscillator. Proceedings of the XV Workshop on High Energy Physics and Field Theory, Protvino, Russia, 6–10 July 1992.Google Scholar
  2. [AI]
    R. Askey and M. E. H. Ismail — A generalization of the ultraspherical polynomials. Studies in Pure Mathematics (P. Erdös, ed.), Birkhäuser, Boston, Massachusetts, pp. 55-78, 1983.Google Scholar
  3. [AS1]
    N. M. Atakishiyev and S. K. Suslov-Difference analogs of the harmonic oscillator. Theoretical and Mathematical Physics, Vol. 85, No. 1, pp. 1055–1062, 1990.MathSciNetADSCrossRefGoogle Scholar
  4. [AS2]
    N. M. Atakishiyev and S. K. Suslov-A realization of the q-harmonic oscillator. Theoretical and Mathematical Physics, Vol. 87, No. 1, pp. 442–444, 1991.MathSciNetADSCrossRefGoogle Scholar
  5. [Bi]
    L. C. Biedenharn-The quantum group SUq(2) and a q-analogue of the boson operators. J. Phys. A: Math. Gen., Vol. 22, No. 18, pp. L873–L878, 1989.MathSciNetADSCrossRefGoogle Scholar
  6. [Br]
    D.M. Bressoud — A simple proof of Mehler’s formula for q-Hermite polynomials, Indiana Univ. Math. J., Vol. 29, pp. 577–580, 1980.MathSciNetMATHCrossRefGoogle Scholar
  7. [GR]
    G. Gasper and M. Rahman — Basic Hypergeometric Series. Cambridge University Press, Cambridge, 1990.MATHGoogle Scholar
  8. [M]
    A. J. Macfarlane — On q-analogues of the quantum harmonic oscillator and the quantum group SU(2)q. J. Phys. A: Math. Gen., Vol. 22, No. 21, pp. 4581–4588, 1989.MathSciNetADSMATHCrossRefGoogle Scholar
  9. [R]
    L. J. Rogers — Second memoir on the expansion of certain infinite products. Proc. London Math. Soc, Vol. 25, pp. 318–343, 1894.Google Scholar
  10. [W]
    N. Wiener — The Fourier Integral and Certain of Its Applications. Cambridge University Press, Cambridge, 1933.Google Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • R. Askey
    • 1
  • N. M. Atakishiyev
    • 2
  • S. K. Suslov
    • 3
  1. 1.Dept. of Math.U. of Wis.MadisonUSA
  2. 2.Physics InstituteBakuAzerbaijan
  3. 3.Kurchatov Institute of Atomic EnergyMoscowRussia

Personalised recommendations