Z3-Grading and Ternary Algebraic Structures

Dedicated to Lawrence C. Biedenharn on his 70th birthday
  • Richard Kerner


There is steadily growing interest, during past few years, in the algebraic structures that might replace algebras of functions describing geometries of the continuum. Such non-conventional geometries can be traced back to the introduction of anti-commuting variables (Berezin (1), A and Volkov (2), Wess and Zumino (3)) and the introduction of the supermanifolds (Rogers (4), Gawedzki (5), Sternberg (6)). In these geometries the algebra of functions separates quite naturally into even and odd parts, and can be described locally by ordinary functions on a manifold tensorised with some Grassman algebra spanned by the anti-commuting variables. It turned out that it was possible to generalize almost all the concepts of usual geometries to the non-commutative Grassmannian variables, i.e. the differentiation, the integration, the vector fields, connections and the like.


Associative Algebra Free Associative Algebra Ordinary Function Ternary Algebra General Gauge Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    F.A. Berezin, D.A. Leites, Sov.Math.Dokl. 16, p. 1218 (1975).MATHGoogle Scholar
  2. (2).
    D.V. Volkov, D.P. Akulov, Phys.Lett. 46B, p. 109 (1973).ADSGoogle Scholar
  3. (3).
    J. Wess, B. Zumino, Nucl.Phys. B70, p. 39 (1974). Phys.Lett. 66B, p. 361 (1977). Phys.Lett. 74B, p. 51 (1978).MathSciNetADSCrossRefGoogle Scholar
  4. (4).
    A. Rogers, Journ.Math.Phys. 22, p. 939 (1981).ADSMATHCrossRefGoogle Scholar
  5. (5.)
    K. Gawedzki, Ann. Inst.H. Poincaré, 27, p. 335 (1977).MathSciNetGoogle Scholar
  6. (6).
    A. Corwin, Y. Ne’eman, S. Sternberg, Rev.Mod.Phys. 47, p. 573 (1975).MathSciNetADSMATHCrossRefGoogle Scholar
  7. (7).
    A. Connes, Publ. IHES, 62, p. 257 (1986).Google Scholar
  8. (8).
    M. Dubois-Violette, R. Kerner, J. Madore, Journ.Math.Phys. 31, p. 316 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  9. M. Dubois-Violette, R. Kerner, J. Madore, Journ.Math.Phys. 31, p. 323 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  10. (9).
    R. Kerner, J. Madore, “Classical & Quantum Gravity”, 8, p. 1077 (1991).MathSciNetADSMATHCrossRefGoogle Scholar
  11. (10).
    R. Coquereaux, G. Esposito-Farèse, Nucl.Phys.B 353, p. 689 (1991).ADSCrossRefGoogle Scholar
  12. (11).
    R. Kerner, Journ.Math.Phys. 33, p. 403 (1992).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Richard Kerner
    • 1
  1. 1.LPTGCR - Université Pierre et Marie CurieParisFrance

Personalised recommendations