Solitons in Optical Fibers and their Use in Ultra Long Distance, High Bit Rate Transmission

  • L. F. Mollenauer
  • J. P. Gordon
Part of the NATO ASI Series book series (NSSB, volume 339)


Long distance transmission using optical amplifiers can provide greater bandwidth at lower cost than that using conventional electronic regeneration. In the first place, the cost of regenerators tends to grow rapidly with increasing bit rate. More fundamentally, to take full advantage of the potential capacity of fibers, one would like to use wavelength division multiplexing (WDM). A separate set of regenerators is required for each channel, however, again multiplying the cost. Finally, electronic regenerators, in employing a great many active components that must work in perfect coordination, pose a serious potential for failure.


Wavelength Division Multiplex Timing Jitter Fiber Ring Laser Velocity Shift Group Delay Dispersion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    R. J. Mears, L. Reekie, I. M. Jauncey, and D. N. Payne, “Low-noise erbium-doped fiber amplifier operating at 1.54 μ,m,” Electron. Lett. 23, 1026 (1987).CrossRefGoogle Scholar
  2. [2]
    E. Desurvire, J. R. Simpson, and P. C. Becker, “High-gain erbium-doped traveling-wave amplifier,” Optics Lett. 12, 888 (1987).CrossRefGoogle Scholar
  3. [3]
    L. F. Mollenauer, J. P. Gordon, and M. N. Islam, “Soliton propagation in long fibers with periodically compensated loss,” IEEE J. Quantum Electron. QE-22, 157 (1986).CrossRefGoogle Scholar
  4. [4]
    L. F. Mollenauer and K. Smith, “Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain,” Opt. Lett. 13, 675 (1988).CrossRefGoogle Scholar
  5. [5]
    L. F. Mollenauer, S. G. Evangelides, and H. A. Haus, “Long distance soliton propagation using lumped amplifiers and dispersion shifted fiber,” J. Lightwave Technol. 9, 194 (1991) Also see:.CrossRefGoogle Scholar
  6. A. Hasegawa and Y. Kodama, “Guiding-center soliton in optical fibers,” Opt. Lett. 15, 1443 (1990). (Note: the term “guiding” here has no connection whatsoever with the “guiding-filters” of Refs. 20 and 21.) and.CrossRefGoogle Scholar
  7. K. J. Blow and N. J. Doran, “Average Soliton Dynamics and the Operation of Soliton Systems with Lumped Amplifiers,” Photonics Tech. Lett., 3, 369 (1991).CrossRefGoogle Scholar
  8. [6]
    L. F. Mollenauer, M. J. Neubelt, S. G. Evangelides, J. P. Gordon, J. R. Simpson, and L. G. Cohen, “Experimental study of soliton transmission over more than 10,000 km in dispersion shifted fiber,” Opt. Lett. 15, 1203 (1990).CrossRefGoogle Scholar
  9. [7]
    L. F. Mollenauer, B. M. Nyman, M. J. Neubelt, G. Raybon, and S. G. Evangelides, “Demonstration of soliton transmission at 2.4 Gbit/s over 12,000 km,” Electron. Lett. 27, 178 (1991).CrossRefGoogle Scholar
  10. [8]
    J. P. Gordon, “Dispersive perturbations of solitons of the nonlinear Schrö equation,” J. Opt. Soc. Am. B 9 (1992).Google Scholar
  11. [9]
    N. S. Bergano, J. Aspell, C. R. Richardson, P. R. Trischitta, B. M. Nyman, and F. W. Kerfoot, “Bit error measurements of 14,000 km, 5 Gbit/s fiber-amplifier transmission system using circulating loop,” Electron. Lett. 27, 1889 (1991).CrossRefGoogle Scholar
  12. [10]
    J. P. Gordon and L. F. Mollenauer, “Phase noise in photonic communications systems using linear amplifiers,” Opt. Lett. 15, 1351 (1990).CrossRefGoogle Scholar
  13. [11]
    S. Saito, T. Imai, T. Sugie, N. Ohakawa, Y. Ichihashi, and T. Ito, “An over 2,200 km coherent transmission experiment at 2.5 GBits/s using erbium-dopedfiber amplifiers,” post deadline paper PD2-1 in Postdeadline Papers of the Optical Fiber Communication Conference, San Francisco, California, 22–26 Jan., 1990; Optical Society of America, Washington, DC, publishers.Google Scholar
  14. [12]
    J. P. Gordon and L. F. Mollenauer, “Effects of fiber nonlinearities and amplifier spacing on ultra long distance transmission,” J. Lightwave Technol. 9, 170 (1991).CrossRefGoogle Scholar
  15. [13]
    J. P. Gordon and H. A. Haus, “Random walk of coherently amplified solitons in optical fiber,” Opt. Lett. 11, 665 (1986).CrossRefGoogle Scholar
  16. [14]
    G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry-Perot stabilizer for soliton transmission,” Opt. Lett. 18, 107 (1993).CrossRefGoogle Scholar
  17. [15]
    L. F. Mollenauer, M. J. Neubelt, M. Haner, E. Lichtman, S. G. Evangelides, and B. M. Nyman, “Demonstration of error-free soliton transmission at 2.5 Gbit/s over more than 14,000 km,” Electron. Lett. 27, 2055 (1991).CrossRefGoogle Scholar
  18. [16]
    A. Mecozzi, J. D. Moores, H. A. Haus, and Y. Lai, “Soliton transmission control,” Opt. Lea. 16, 1841 (1991).CrossRefGoogle Scholar
  19. [17]
    Y. Kodama and A. Hasegawa, “Generation of Asymptotically Stable Optical Solitons and Suppression of the Gordon-Haus Effect,” Opt. Lett. 17, 31 (1992).CrossRefGoogle Scholar
  20. [18]
    L. F. Mollenauer, E. Lichtman, G. T. Harvey, M. J. Neubelt, and B. M. Nyman, “Demonstration of error-free soliton transmission over more than 15,000 km at 5 Gbit/s, single-channel, and over 11,000 km at 10 Gbit/s in a two-channel WDM,” Electron. Lett. 28, 792 (1992).CrossRefGoogle Scholar
  21. [19]
    E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, and A. M. Prokorov, “Long-range interaction of solitons in ultra-long communication systems,” Soviet Lightwave Communications 1, 235 (1991).Google Scholar
  22. [20]
    L. F. Mollenauer, J. P. Gordon, and S. G. Evangelides, “The sliding-frequency guiding filter: an improved form of soliton jitter control,” Opt. Lett. 17, 1575 (1992). [Note: Because of an improper combination of sign conventions, the numerical simulations reported on in this Letter incorrectly yielded the offset δω<0, so that we mistakenly recommended down-sliding. The mistake is corrected here.].CrossRefGoogle Scholar
  23. [21]
    L. F. Mollenauer, E. Lichtman, M. J. Neubelt, and G. T. Harvey, “Demonstration, using sliding-frequency guiding filters, of error-free soliton transmission over more than 20,000 km at 10 Gbit/s, single-channel, and over more than 13,000 km at 20 Gbit/s in a two-channel WDM,” Electron. Lett. 29, 910 (1993).CrossRefGoogle Scholar
  24. [22]
    L. F. Mollenauer, K. Smith, and J. P. Gordon, “Resistance of solitons to the effects of polarization dispersion in optical fibers,” Opt. Lett. 14, 1219 (1989).CrossRefGoogle Scholar
  25. [23]
    J. P. Gordon, “Interaction forces among solitons in optical fibers,” Opt. Lett. 8, 596 (1983).CrossRefGoogle Scholar
  26. [24]
    N. A. Olsson, P. K. Andrekson, J. R. Simpson, T. Tanbun-ek, R. A. Logan, and K. W. Wecht, “Bit-error-rate investigation of two-channel soliton propagation over more than 10,000 km, Electronics Lett. 27, 695 (1991).CrossRefGoogle Scholar
  27. [25]
    M. Nakazawa, E. Yamada, H. Kubotra, K. Suzuki, “10 Gbit/s soliton transmission over one million kilometers,” Electron. Lett. 27, 1270 (1991).CrossRefGoogle Scholar
  28. [26]
    L. F. Mollenauer, S. G. Evangelides, and J. P. Gordon, “Wavelength Division Multiplexing with Solitons in Ultra Long Distance Transmission Using Lumped Amplifiers,” J. Lightwave Technol. 9, 362 (1991).CrossRefGoogle Scholar
  29. [27]
    A. Mecozzi and H. A. Haus, “Effect of filters on soliton interactions in wavelength-division-multiplexing systems,” Opt. Lett. 17, 988 (1992).CrossRefGoogle Scholar
  30. [28]
    S. G. Evangelides, L. F. Mollenauer, J. P. Gordon, and N. S. Bergano, “Polarization Division Multiplexing with Solitons,” J. Lightwave Technol. 10, 28 (1992).CrossRefGoogle Scholar
  31. [29]
    F. Heismann and M. S. Whalen, “Broadband reset-free automatic polarization controller,” Electron. Lett. 27, 377 (1991).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • L. F. Mollenauer
    • 1
  • J. P. Gordon
    • 1
  1. 1.AT&T Bell LaboratoriesHolmdelUSA

Personalised recommendations