Skip to main content

Visual Psychophysics

  • Chapter
Thermal Imaging Systems

Part of the book series: Optical Physics and Engineering ((OPEG))

  • 218 Accesses

Abstract

The problem to be addressed in this chapter is the following: how much can the electro-optical image deviate from “reality” before the human visual system becomes disoriented and cannot efficiently extract information from it? This question cannot be answered unambiguously today, but to approach the answer we will consider the following visual processes and effects:

  • • resolving power and spatial frequency response;

  • • perception of noise;

  • • image magnification;

  • • discrimination of signals from noise and/or background;

  • • disagreeability of effects such as too large or small field of view, too fast scene motion, raster, and flicker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.L. Gregory, Eye and Brain: The Psychology of Seeing, World University Library, Third Impression, 1967.

    Google Scholar 

  2. R.L. Gregory, The Intelligent Eye, McGraw-Hill, 1970.

    Google Scholar 

  3. T.N. Cornsweet, Visual Perception, Academic Press, 1970.

    Google Scholar 

  4. H. Davson, editor, The Eye, four volumes, Academic, 1969.

    Google Scholar 

  5. G.A. Fry, “The Eye and Vision”, Chapter 1 of Volume 2 of Applied Optics and Optical Engineering, R. Kingslake, editor, Academic, 1965.

    Google Scholar 

  6. OH. Schade, Sr., “Optical and Photoelectronic Analog of the Eye”, JOSA, 46, pp 721–739, September 1956.

    Article  ADS  Google Scholar 

  7. G.M. Glasford, Fundamentals of Television Engineering, McGraw-Hill, 1955.

    Google Scholar 

  8. F.W. Campbell and J.G. Robson, “Application of Fourier Analysis to the Visibility of Gratings”, Journal of Physiology (Great Britain), 197, pp 551–566, 1968.

    Google Scholar 

  9. M.B. Sachs, J. Nachmias, and J.G. Robson, “Spatial-Frequency Channels in Human Vision”, JOSA, 61, pp 1176–1186, September 1971.

    Article  ADS  Google Scholar 

  10. C.F. Stromeyer III and B. Julesz, “Spatial-Frequency Masking in Vision: Critical Bands and the Spread of Masking”, JOSA, 62, pp 1221–1232, October 1972.

    Article  ADS  Google Scholar 

  11. A. Watanabe, T. Mori, S. Nagata, and K. Hiwatashi, “Spatial Sine-Wave Responses of the Human Visual System”, Vision Research, 8, pp 1245–1263, 1968.

    Article  Google Scholar 

  12. G.A. Fry, “The Optical Performance of the Human Eye”, Progress In Optics, Volume 8, E. Wolf, editor, American Elsevier Publishing Company, 1970.

    Google Scholar 

  13. A. Fiorentini, “Dynamic Characteristics of Visual Processes” in Progress in Optics, Volume 1, E. Wolf, editor, North Holland Publishing Company, 1965.

    Google Scholar 

  14. L. Levi, “Vision in Communication” in Progress in Optics, Volume 8, E. Wolf, editor, American Elsevier Publishing Company, 1970.

    Google Scholar 

  15. G. Westheimer, “Image Quality in the Human Eye”, Optica Acta, 17, pp 641–658, September 1970.

    Article  ADS  Google Scholar 

  16. M.A. Ostrovskaya, “The Modulation Transfer Function (MTF) of the Eye”, Soviet Journal of Optical Technology, 36, pp 132–142 (English Translation), January 1969.

    Google Scholar 

  17. J.G. Robson, “Spatial and Temporal Contrast Sensitivity Functions of the Visual System”, JOSA, 56, pp 1141–1142, August 1966.

    Article  Google Scholar 

  18. E.M. Lowry and J.J. De Palma, “Sine-Wave Response of the Visual System. I. The Mach Phenom-enon”, JOSA, 51, pp 740–746, July 1961.

    Article  ADS  Google Scholar 

  19. E.M. Lowry and J.J. De Palma, “Sine-Wave Response of the Visual System. II. Sine-Wave and Square-Wave Contrast Sensitivity”, JOSA, 52, pp 328–335, March 1962.

    Article  ADS  Google Scholar 

  20. O. Bryngdahl, “Characteristics of the Visual System: Psychophysical Measurements of the Response to Spatial Sine-Wave Stimuli in the Mesopic Region”, JOSA, 54, pp 1152–1160, September 1964.

    Article  ADS  Google Scholar 

  21. H.A. W. Schober and R. Hilz, “Contrast Sensitivity of the Human Eye for Square-Wave Gratings”, JOSA, 55, pp 1086–1091, September 1965

    Article  ADS  Google Scholar 

  22. A.S. Patel, “Spatial Resolution by the Human Visual System. The Effect of Mean Retinal Illuminance”, JOSA, 56, pp 689–694, May 1966.

    Article  ADS  Google Scholar 

  23. F.L. Van Nes and M.A. Bouman, “Spatial Modulation Transfer in The Human Eye”, JOSA, 57, pp 401–406, March 1967.

    Article  ADS  Google Scholar 

  24. F.L. Van Nes, J.J. Koenderink, H. Nas, and M.A. Bouman, JOSA, 57, pp 1082–1088, September 1967.

    Article  ADS  Google Scholar 

  25. F.W. Campbell, “The Human Eye as an Optical Filter”, Proc. IEEE, 56, pp 1009–1014, June 1968.

    Article  Google Scholar 

  26. D.S. Gilbert and D.H. Fender, “Contrast Thresholds Measured with Stabilized and Non-Stabilized Sine-Wave Gratings”, Optica Acta, 16, pp 191–204, March 1969.

    Article  Google Scholar 

  27. H. Pollehn and H. Roehrig, “Effect of Noise on the Modulation Transfer Function of the Visual Channel”, JOSA, 60, pp 842–848, June 1970.

    Article  ADS  Google Scholar 

  28. J.J. Kulikowski, “Some Stimulus Parameters Affecting Spatial And Temporal Resolution of Human Vision”, Vision Research, 11, pp 83–93, January 1971.

    Article  Google Scholar 

  29. C.A. Bennett, S.H. Winterstein, and R.E. Kent, “Image Quality and Target Recognition”, Human Factors, 9, pp 5–32, February 1967.

    Google Scholar 

  30. P. Mertz, “Perception of Television Random Noise”, JSMPTE, 54, pp 9–34, January 1950.

    Google Scholar 

  31. M.W. Baldwin, unpublished, reported in Reference 30.

    Google Scholar 

  32. J.N. Coltman and A.E. Anderson, “Noise Limitations to Resolving Power in Electronic Imaging”, Proc. IRE, 48, pp 858–865, May 1960.

    Article  Google Scholar 

  33. J.M. Barstow and H.N. Christopher, “The Measurement of Random Monochrome Video Interference”, Trans. of the AIEE, 72, Part I — Communication and Electronics, pp 735–741, January 1954.

    Google Scholar 

  34. J.M. Barstow and H.N. Christopher, “The Measurement of Random Video Interference to Monochrome and Color Television Pictures”, AIEE Transactions on Communication and Electronics, 63, pp 313–320, November 1962.

    Google Scholar 

  35. R.C. Brainard, F.W. Kammerer, and E.G. Kimme, “Estimation of the Subjective Effects of Noise in Low-Resolution Television Systems”, IRE Trans. on Info. Thry., 8, pp 99–106, February 1962.

    Article  Google Scholar 

  36. R.C. Brainard, “Low-Resolution TV: Subjective Effects of Noise added to a Signal”, BSTJ, 46, pp 223–260, January 1967.

    Google Scholar 

  37. T.S. Huang, “The Subjective Effect of Two-Dimensional Pictorial Noise”, IEEE Trans. Info. Thry., IT-11, pp 43–53, January 1964.

    Google Scholar 

  38. O.H. Schade, Sr., “An Evaluation of Photographic Image Quality and Resolving Power”, JSMPTE, 73, pp 81–120, February 1964.

    Article  Google Scholar 

  39. F.A. Rosell and R.H. Willson, “Recent Psycho physical Experiments and the Display Signal-to-Noise Ratio Concept”, Chapter 5 of Perception of Displayed Information, L.M. Biberman, editor, Plenum, 1973.

    Google Scholar 

  40. F.M. Bagrash, L.G. Kerr, and J.P. Thomas, “Patterns of Spatial Integration in the Detection of Compound Visual Stimuli”, Vision Research, 11, pp 625–634, July 1971.

    Article  Google Scholar 

  41. H.L. De Vries, “The Quantum Character of Light and its Bearing Upon the Threshold of Vision, the Differential Sensitivity, and Visual Acuity of the Eye”, Physica, 10, pp 553–564, July 1943.

    Article  ADS  Google Scholar 

  42. A. Rose, “The Sensitivity Performance of the Human Eye on an Absolute Scale”, JOSA, 38, pp 196–208, February 1948.

    Article  ADS  Google Scholar 

  43. H.R. Luxenberg and R.A. Kuehn, Display Systems Engineering, McGraw-Hill, 1968.

    Google Scholar 

  44. H.R. Blackwell, “Development and Use of a Quantitive Method for Specification of Interior Illumination Levels”, Illuminating Engineering, 54, pp 317–353, June 1959.

    Google Scholar 

  45. Z.L. Budrikis, “Visual Thresholds and the Visibility of Random Noise in TV”, Proc. IRE (Australia), pp 751-759, December 1961.

    Google Scholar 

  46. C.H. Graham and R. Margaria, “Area and the Intensity — Time Relation in the Peripheral Retina”, Am. J. Physiology, 113, pp 299–305, 1935.

    Google Scholar 

  47. R. Tittarelli and F.H.C. Marriott, “Temporal Summation in Foveal Vision”, Vision Research, 10, pp 1477–1480, December 1970.

    Article  Google Scholar 

  48. E.W. Engstrom, “A Study of Television Image Characteristics”, Proc. IRE, Part I, 21, pp 1631–1651, December 1933; Part II, 23, pp 295-310, April, 1935.

    Article  Google Scholar 

  49. E.F. Brown, “Low Resolution TV: Subjective Comparision of Interlaced and Non-interlaced Pictures”, BSTJ, 66, pp 119–132, January 1967.

    Google Scholar 

  50. J.A. Inderhees, personal communication, Cincinnati Electronics Corporation, Cincinnati, Ohio.

    Google Scholar 

  51. F.T. Thompson, “Television Line Structure Suppression”, JSMPTE, 66, pp 602–606, October 1952.

    Article  Google Scholar 

  52. M. Kiya, personal communication, United States Air Force Space and Missile Systems Organization, Los Angeles, California.

    Google Scholar 

  53. R.R. Legault, “Man–The Final Stage of an Electro-Optical Imaging System”, IEEE EASCON 1969 Convention Record, pp-16-29.

    Google Scholar 

  54. J.W. Coltman, “Scintillation Limitations to Resolving Power in Imaging Devices”, JOSA, 44, pp 234–237, March 1954.

    Article  ADS  Google Scholar 

  55. A. Rose, “The Relative Sensitivities of Television Pickup Tubes, Photographic Film, and the Human Eye”, Proc. IRE, 30, pp 293–300, 1942.

    Article  Google Scholar 

  56. A. Rose, “A Unified Approach to the Performance of Photographic Film, Television Pickup Tubes, and the Human Eye”, JSMPTE, 47, pp 273–295, October 1946.

    Article  Google Scholar 

  57. H.R. Blackwell, “Contrast Thresholds of the Human Eye”, JOSA, 36, pp 624–643, November 1946.

    Article  ADS  Google Scholar 

  58. H.R. Blackwell, “Studiesof the Form of Visual Threshold Data”, JOSA, 43, pp 456–463, June 1953.

    Article  ADS  Google Scholar 

  59. H.R. Blackwell, “Neural Theories of Simple Visual Discrimination”, JOSA, 53, pp 129–160, January 1963.

    Article  ADS  Google Scholar 

  60. H.A. Ory, “Statistical Detection Theory of Threshold Visual Performance”, Rand Corporation Memorandum RM-5992-PR, Santa Monica, Ca., September 1969.

    Google Scholar 

  61. H.H. Bailey, “Target Detection Through Visual Recognition: A Quantitative Model”, Rand Corporation Memorandum RM-6158-PR, Santa Monica, Ca., February 1970.

    Google Scholar 

  62. I. Overington and E.P. Lavin, “A Model of Threshold Detection Performance for the Central Fovea”, Optica Acta, 18, pp 341–357, May 1971.

    Article  ADS  Google Scholar 

  63. G.H. Kornfeld and W.R. Lawson, “Visual Perception Models”, JOSA, 61, pp 811–820, June 1971.

    Article  ADS  Google Scholar 

  64. J.J. De Vos, A. Lazet, and M.A. Bouman, “Visual Contrast Thresholds in Practical Problems”, JOSA, 46, pp 1065–1068, December 1956.

    Article  ADS  Google Scholar 

  65. For a discussion of the Rayleigh resolution criterion, see pp 13-14 of Perception of Displayed Information, L.M. Biberman, editor, Plenum, 1973.

    Google Scholar 

  66. P.G. Roetling, E.A. Trabka, and R.E. Kinzly, “Theoretical Prediction of Image Quality”, JOSA, 58, pp 342–346, March 1968.

    Article  ADS  Google Scholar 

  67. G.C. Higgens, “Methods for Engineering Photographic Systems”, Appl. Opt., 3, pp 1–10, January 1964.

    Article  ADS  Google Scholar 

  68. O.H. Schade, Sr., “Modern Image Evaluation and Television, (The Influence of Electronic Television on the Methods of Image Evaluation)”, Appl. Opt., 3, pp 17–21, January 1964.

    Article  ADS  Google Scholar 

  69. G.S. Hopper, Personal Communication, Texas Instruments, Inc., Dallas, Texas.

    Google Scholar 

  70. O.H. Schade, Sr., “Electro-Optical Characteristics of Television Systems”, RCA Rev., 9, pp 5–37, March 1948.

    Google Scholar 

  71. M.W. Baldwin, Jr., “The Subjective Sharpness of Simulated Television Images”, BSTJ, 19, pp 563–587, October 1940.

    Google Scholar 

  72. Frank Scott, “The Search for a Summary Measure of Image Quality — A Progress Report”, Phot. Sci. and Eng., 13, pp 154–164, May–June 1968.

    Google Scholar 

  73. From a Boeing Corporation report summarized in Chapter Three of Perception of Displayed Information, L.M. Biberman, editor, Plenum, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lloyd, J.M. (1975). Visual Psychophysics. In: Thermal Imaging Systems. Optical Physics and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1182-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1182-7_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1184-1

  • Online ISBN: 978-1-4899-1182-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics