Skip to main content

High- and Medium-Energy Surfaces: Ultrahigh Vacuum Approach

  • Chapter
Modern Approaches to Wettability

Abstract

Solid surfaces have traditionally been divided into the categories of high energy and low energy.(1, 2) This concept has its root in the bulk nature of the solid itself. Metals, glasses, and ceramics exist as materials of high strength because of the chemical bonds that hold their atoms together. A large input of energy is then necessary to fracture these solids, thereby creating two new surfaces of high enthalpy and free energy. In general, these energies(3) are of the order of 103 mJ/m2, ranging from 1000 to 4000 mJ/m2. By contrast, low-energy surfaces usually derive from soft organic solids, whose molecules are held together by physical, essentially van der Waals, forces. The enthalpy or free energy of these surfaces(3) are of the order of 101 mJ/m2, ranging roughly from 15 to 60 mJ/m2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. D. Harkins and A. J. Feldman, J. Amer. Chem. Soc. 44, 2665 (1922).

    Article  CAS  Google Scholar 

  2. H. W. Fox and W. A. Zisman, J. Colloid Sci. 5, 514 (1950).

    Article  CAS  Google Scholar 

  3. W. A. Zisman, Adv. Chem. Ser. No. 43, p. 1, American Chemical Society, Washington, DC (1963).

    Google Scholar 

  4. L. A. Girifalco and R. J. Good, J. Phys. Chem. 61, 904 (1957).

    Article  CAS  Google Scholar 

  5. F. M. Fowkes, J. Phys. Chem. 67, 2538 (1963).

    Article  CAS  Google Scholar 

  6. F. M. Fowkes, Ind. Eng. Chem. 56(12), 40 (1964).

    Article  CAS  Google Scholar 

  7. A. C. Hamaker, Physica 4, 1058 (1937).

    Article  CAS  Google Scholar 

  8. H. Reerink and J. Th. Overbeek, Discuss. Faraday Soc. 18, 74 (1954).

    Article  CAS  Google Scholar 

  9. Westgren, Ark. Chem. Mineral Geol. 7 (6) (1918).

    Google Scholar 

  10. Tuorila, Kolloidchem. Beih. 22, 191 (1926), 27, 44 (1928).

    Article  CAS  Google Scholar 

  11. H. W. Fox, E. F. Hare, and W. A. Zisman, J. Phys. Chem. 59, 1097 (1955).

    Article  CAS  Google Scholar 

  12. M. L. White, J. Phys. Chem. 68, 3083 (1964).

    Article  CAS  Google Scholar 

  13. M. L. White and J. Drobek, J. Phys. Chem. 70, 3432 (1966).

    Article  CAS  Google Scholar 

  14. R. A. Erb, J. Phys. Chem. 69, 1306 (1965).

    Article  CAS  Google Scholar 

  15. W. A. Zisman and K. W. Bewig, J. Phys. Chem. 69, 4238 (1965).

    Article  Google Scholar 

  16. M. K. Bernett and W. A. Zisman, J. Phys. Chem. 74, 2309 (1970).

    Article  CAS  Google Scholar 

  17. M. E. Schrader, J. Colloid Interface Sci. 27, 743 (1968).

    Article  CAS  Google Scholar 

  18. M. E. Schrader, J. Phys. Chem. 74, 2313 (1970).

    Article  CAS  Google Scholar 

  19. P. W. Palmberg and T. N. Rhodin, Phys. Rev. 161, 586 (1967).

    Article  CAS  Google Scholar 

  20. N. V. Kul’kova and L. L. Levchenko, Kinet. Katal. 6, 765, 688 (1965).

    CAS  Google Scholar 

  21. B. J. Hopkins, C. H. B. Mee, and D. Parker, Br. J. Appl. Phys. 15, 865 (1964).

    Article  CAS  Google Scholar 

  22. W. M. H. Sachtler, G. J. H. Dorgelo, and A. A. Holscher, Surface Sci. 5, 221 (1966).

    Article  CAS  Google Scholar 

  23. M. E. Schrader, J. Phys. Chem. 78, 87 (1974).

    Article  CAS  Google Scholar 

  24. A. J. Rosenberg, P. H. Robinson, and H. C. Gatos, J. Appl. Phys. 29, 771 (1958).

    Article  CAS  Google Scholar 

  25. M. A. Chesters and G. A. Somorjai, Surface Sci. 52, 21 (1975).

    Article  CAS  Google Scholar 

  26. M. E. Schrader, in Colloid and Interface Science (M. Kerker, ed.), Vol. 3, p. 105, Academic Press, New York (1976).

    Chapter  Google Scholar 

  27. T. Smith, J. Colloid Interface Sci. 75, 51 (1980).

    Article  CAS  Google Scholar 

  28. M. E. Schrader, J. Phys. Chem. 84, 2774 (1980).

    Article  CAS  Google Scholar 

  29. E. M. Lifshitz, Sov. Phys. JETP (Engl. Transi.) 2, 73 (1956).

    Google Scholar 

  30. I. E. Dzyaloshinskii, E. M. Lifshitz, and L. P. Pitaevskii, Adv. Phys. 10, 165 (1961).

    Article  Google Scholar 

  31. V. A. Parsegian and B. W. Ninham, Nature (London) 2224, 1197 (1969).

    Article  Google Scholar 

  32. V. A. Parsegian, in Physical Chemistry: Enriching Topics from Colloid and Surface Sciences (H. van Olphen and K. J. Mysels, eds.), pp. 26–72, Theorex, La Jolla, CA (1975).

    Google Scholar 

  33. T. Matsunaga and Y. Tamai, Surface Sci. 57, 431 (1976).

    Article  CAS  Google Scholar 

  34. V. A. Parsegian, G. H. Weiss, and M. E. Schrader, J. Colloid Interface Sci. 61, 356 (1977).

    Article  CAS  Google Scholar 

  35. H. Krupp, W. Schnabel, and G. Walter, J. Colloid Interface Sci. 339, 421 (1972).

    Article  Google Scholar 

  36. V. A. Parsegian and G. H. Weiss, J. Colloid Interface Sci. 81, 285 (1981).

    Article  CAS  Google Scholar 

  37. S. Demirci, B. V. Enustun, and J. Turkevich, J. Phys. Chem. 82, 2710 (1978).

    Article  CAS  Google Scholar 

  38. B. V. Derjaguin, V. M. Muller, and Ya. I. Rabinovich, Kolloid Zh. 31, 304 (1969).

    Google Scholar 

  39. E. G. Shafrin and W. A. Zisman, J. Am. Ceram. Soc. 50, 478 (1967).

    Article  CAS  Google Scholar 

  40. G. J. Young, J. Colloid Sci. 13, 67 (1958).

    Article  CAS  Google Scholar 

  41. M. E. Schrader, in Surface Characteristics of Fibers and Textiles (M. J. Schick, ed.), pp. 525–562, Marcel Dekker, New York (1977).

    Google Scholar 

  42. C. O. Timmons and W. A. Zisman, J. Phys. Chem. 68, 1336 (1964).

    Article  CAS  Google Scholar 

  43. M. E. Schrader and S. Yariv, J. Colloid Interface Sci. 136, 85 (1990).

    Article  CAS  Google Scholar 

  44. M. E. Schrader, J. Phys. Chem. 79, 2508 (1975).

    Article  CAS  Google Scholar 

  45. R. D. Brennan, J. Chem. Phys. 20, 40 (1952).

    Article  CAS  Google Scholar 

  46. L. A. Girifalco and R. A. Lad, J. Chem. Phys. 25, 593 (1956).

    Article  Google Scholar 

  47. A. D. Crowell, J. Chem. Phys. 29, 446 (1958).

    Article  CAS  Google Scholar 

  48. P. J. Bryant, P. L. Gutschall, and L. H. Taylor, Wear 7, 118 (1964).

    Article  Google Scholar 

  49. F. A. Putnam and T. Fort, Jr., J. Phys. Chem. 79, 459 (1975).

    Article  CAS  Google Scholar 

  50. T. Fort Jr. and V. P. Toan, presented at the 177th National Meeting of the American Chemical Society, April (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schrader, M.E. (1992). High- and Medium-Energy Surfaces: Ultrahigh Vacuum Approach. In: Schrader, M.E., Loeb, G.I. (eds) Modern Approaches to Wettability. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1176-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1176-6_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1178-0

  • Online ISBN: 978-1-4899-1176-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics