The Wetting Behavior of Fibers

  • Willard D. Bascom


Historically, the technologies most interested in the wetting of fibers have been those involved in the processing of textiles.(1, 2) Much of the early scientific literature on wetting was concerned with liquid penetration into fabrics and other porous solids.(3) More recently, the rapid development of fiber reinforced composites, notably carbon fiber and glass fiber reinforced polymers (CFRP, GFRP), has generated a renewed interest in the wetting of fibers. However, in the interim there has been a change in the scientific attitude toward the use of contact angle measurements as a means of characterizing the surface chemical constitution of solids. In the early literature, the contact angle was viewed as a characteristic of the fiber and a parameter in the capillarity equations for liquid penetration. Due in large measure to the studies by W. A Zisman and co-workers, there has been a change in attitude toward the physical significance of contact angle measurements. It is now recognized that the contact angle can be a highly sensitive tool for surface characterization. Consequently, there is a growing body of literature on the wetting of textile fibers and fibers used in composites aimed at surface chemical characterization as well as the processing of these fibers into composite materials.


Contact Angle Carbon Fiber Contact Angle Hysteresis Wetting Behavior Liquid Surface Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. B. D. Cassie, in Surface Phenomena in Chemistry and Biology (J. F. Daniellli, K. G. A. Pankhurst, and A. C. Riddiford, eds.), p. 166, Pergamon Press, New York (1958).Google Scholar
  2. 2.
    N. K. Adam, The Physics and Chemistry of Surfaces, 3rd ed., p. 169, Oxford University Press, London (1941).Google Scholar
  3. 3.
    E. W. Washburn, Phys. Rev. 17 273 (1921).CrossRefGoogle Scholar
  4. 4.
    Lord Rayleigh, Proc. London Math. Soc. 10, 4 (1879).Google Scholar
  5. 5.
    S. L. Goren, J. Colloid Sci. 19, 81 (1964).CrossRefGoogle Scholar
  6. 6.
    J.-I. Yamaki and Y. Katayama, J. Appl. Polym. Sci. 19 2897 (1975).CrossRefGoogle Scholar
  7. 7.
    J. N. Israelachvilli, Intermolecular and Surface Forces, Academic Press, New York (1985).Google Scholar
  8. 8.
    F. Brochard and P. G. de Gennes, J. Phys. Lett. 45, L–597 (1984).CrossRefGoogle Scholar
  9. 9.
    F. Brochard-Wyart and J.-M. di Meglio, Ann. Chim. 77 275 (1987).Google Scholar
  10. 10.
    W. D. Bascom and J. B. Roman, I&EC Prod. Res. Dev. 7 172 (1968).CrossRefGoogle Scholar
  11. 11.
    J. J. Elmendorp, Koninklijke/Shell Laboratorium, Amsterdam, private communication.Google Scholar
  12. 12.
    P. J. Verschoor and W. D. Bascom, unpublished results.Google Scholar
  13. 13.
    D. W. Fuerstenau and M. C. Williams, Part. Charact. 4, 7 (1987).CrossRefGoogle Scholar
  14. 14.
    J. P. Mutchler, J. Menkart, and A. M. Schwartz, in Pesticidal Formulations Research, Adv. Chem. Ser. No. 86, p. 7, American Chemical Society, Washington DC (1967).Google Scholar
  15. 15.
    R. E. Johnson, Jr., R. H. Dettre, and D. A. Brandreth, J. Colloid Interface Sci. 62 205 (1977).CrossRefGoogle Scholar
  16. 16.
    W. D. Bascom, unpublished results.Google Scholar
  17. 17.
    P. G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).CrossRefGoogle Scholar
  18. 18.
    L. W. Schwartz and S. Garoff, Langmuir 1, 219 (1995).CrossRefGoogle Scholar
  19. 19.
    L. W. Schwartz and S. Garoff, J. Colloid Interface Sci. 106, 422 (1985).CrossRefGoogle Scholar
  20. 20.
    B. Miller, in Surface Characteristics of Fibers, part II (M. J. Schick, ed.), p. 417, Marcel Dekker, New York (1977).Google Scholar
  21. 21.
    A. W. Neumann and R. J. Good, in Surface and Colloid Science, vol. II (R. J. Good and R. R. Stromberg, eds.), p. 31, Plenum Press, New York (1979).CrossRefGoogle Scholar
  22. 22.
    W. A. Zisman, in Contact Angle, Wettability and Adhesion, Adv. Chem. Series 43, p. 1, Am. Chem. Soc., Washington, DC (1964).CrossRefGoogle Scholar
  23. 23.
    S. P. Wesson and A. Tarantino, J. Non-Cryst. Solids 38–39, 619 (1980).CrossRefGoogle Scholar
  24. 24.
    W. D. Bascom, in Advances in Polymer Science, Vol. 85, p. 89, Springer-Verlag, Berlin (1988)Google Scholar
  25. 25.
    S. Wu, Polymer Interface and Adhesion, p. 67, Marcel Dekker, New York (1982).Google Scholar
  26. 26.
    G. E. Hammer and L. T. Drzal, Appl. Surf Sci. 4, 340 (1980).CrossRefGoogle Scholar
  27. 27.
    D. H. Kaelble, P. J. Dynes, and E. H. Cirlin, J. Adhesion 6, 23 (1974).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • Willard D. Bascom
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of UtahSalt Lake CityUSA

Personalised recommendations