Advertisement

Cognitive Underspecification

Its Variety and Consequences
  • James T. Reason
Part of the Cognition and Language book series (CALS)

Abstract

If cognitive science is to make a useful contribution to the safety and efficiency of future technological systems, it must be able to offer designers some workable generalizations regarding the information-handling characteristics of a system’s human participants (see Card, Moran, & Newell, 1983). This chapter explores the generality of one such approximation:

When cognitive operations are under specified, they tend to default to contextually appropriate, high-frequency responses.

Keywords

Serial Position Calling Condition Memory Search Semantic Context Frequency Gambling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baars, B. J. (1983). Conscious contents provide the nervous system with coherent global information. In R. Davidson, G. Schwartz, & D. Shapiro (Eds.), Consciousness and self-regulation (Vol. 3). New York: Plenum Press.Google Scholar
  2. Bartlett, F. J. (1932). Remembering. Cambridge: Cambridge University Press.Google Scholar
  3. Battig, W. F., & Montague, W. E. (1969). Category norms for verbal items in 56 categories: A replication and extension of the Connecticut category norms. Journal of Experimental Psychology Monograph, 80, 1–46.CrossRefGoogle Scholar
  4. Bobrow, D. G., & Norman, D. A. (1975). Some principles of memory schemata. In D. Bobrow & A. Collins (Ed.), Representation and understanding: Studies in cognitive science, New York: Academic Press.Google Scholar
  5. Bousfield, W. A., & Barclay, W. D. (1950). The relationship between order and frequency of occurrence of restricted associative responses. Journal of Experimental Psychology, 40, 644–647.CrossRefGoogle Scholar
  6. Broadbent, D. E. (1967). Word-frequency effect and response bias. Psychological Review, 74, 1–15.PubMedCrossRefGoogle Scholar
  7. Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer interaction. Hillsdale, NJ: Erlbaum.Google Scholar
  8. Catlin, J. (1969). On the word-frequency effect. Psychological Review, 76, 504–506.CrossRefGoogle Scholar
  9. Chapman, L. J., & Chapman, J. P. (1973). Disordered thought in schizophrenia. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  10. Davis, R. (1945). Pilot error. London: Her Majesty’s Stationery Office.Google Scholar
  11. Francis, W. N., & Kucera, H. (1982). Frequency analysis of English usage. Boston: Houghton Mifflin.Google Scholar
  12. Freud, S. (1901/1966). The psychopathology of everyday life (A. Tyson, Trans.). London: Benn.Google Scholar
  13. Gregg, V. (1976). Word frequency, recognition and recall. In J. Brown (Ed.), Recall and recognition. London: Wiley.Google Scholar
  14. Hockey, G. R. J. (1973). Changes in information selection patterns in multisource monitoring as a function of induced arousal shifts. Journal of Experimental Psychology, 101, 35–42.PubMedCrossRefGoogle Scholar
  15. Hockey, G. R. J., & Hamilton, P. (1970). Arousal and information selection in short-term memory. Nature, 226, 866–867.PubMedCrossRefGoogle Scholar
  16. Hotopf, W. H. N. (1980). Semantic similarity as a factor in whole-word slips of the tongue. In V. Fromkin (Ed.), Errors in linguistic performance. London: Academic Press.Google Scholar
  17. Howell, W. C. (1973). Representation of frequency in memory. Psychological Bulletin, 80, 44–53.CrossRefGoogle Scholar
  18. Howes, D. H., & Solomon, R. L. (1951). Visual duration threshold as a function of word probability. Journal of Experimental Psychology, 41, 401–410.PubMedCrossRefGoogle Scholar
  19. Kimble, G. A., & Perlmuter, L. C. (1970). The problem of volition. Psychological Review, 77, 361–383.PubMedCrossRefGoogle Scholar
  20. Luria, A. R. (1973). The working brain: An introduction to neuropsychology. Harmondsworth, England: Penguin Books.Google Scholar
  21. Masher, L., & Zacks, R. T. (1986). Automatic processing of fundamental information: The case for frequency of occurrence. American Psychologist, 39, 1372–1388.Google Scholar
  22. Matlin, M. W., Stang, D. J., Gawron, V. J., Steedman, A., & Derby, P. L. (1979). Evaluative meaning as a determinant of spew position. Journal of General Psychology, 100, 3–11.CrossRefGoogle Scholar
  23. McClelland, J. L., & Rumelhart, D. E. (1985). Distributed memory and the representation of general and specific information. Journal of Experimental Psychology: General, 114, 159–188.CrossRefGoogle Scholar
  24. Meringer, R. (1908). Aus dem Leben der Sprache: Versprechen, Kindersprache, Nachahmungstrieb. Berlin: Behrs Verlag.Google Scholar
  25. Mintzman, D. L., Nozawa, G., & Irmscher, M. (1982). Frequency as a nonpropositional attribute of memory. Journal of Verbal Learning and Verbal Behavior, 109, 98–117.Google Scholar
  26. Nakatani, L. H. (1973). On the evaluation of models for the word-frequency effect. Psychological Review, 80, 195–202.CrossRefGoogle Scholar
  27. Neisser, U. (1967). Cognitive psychology. New York: Appleton-Century-Crofts.Google Scholar
  28. Newbigging, P. L. (1961). The perceptual redintegration of frequent and infrequent words. Canadian Journal of Psychology, 15, 123–132.PubMedCrossRefGoogle Scholar
  29. Norman, D. A. (1981). Categorization of action slips. Psychological Review, 88, 1–15.CrossRefGoogle Scholar
  30. Norman, D. A. (1985). New views of information processing: Implications for intelligent decision support systems. In E. Hollnage, G. Mancini, & D. Woods (Eds.), Intelligent decision aids in process environments. San Miniato, Italy: NATO Advanced Study Institute.Google Scholar
  31. Norman, D. A., & Bobrow, D. G. (1979). Descriptions: An intermediate stage in memory retrieval. Cognitive Psychology, 11, 107–123.CrossRefGoogle Scholar
  32. Norman, D. A., & Shallice, T. (1980). Attention to action: Willed and automatic control of behavior. CHIP Document No. 99, Center for Human Information Processing, University of California—San Diego, La Jolla.Google Scholar
  33. Pollack, I., Rubinstein, H., & Decker, L. (1960). Analysis of incorrect responses to an unknown message set. Journal of the Acoustical Society of America, 32, 454–457.CrossRefGoogle Scholar
  34. Rasmussen, J. (1982). Human errors: A taxonomy for describing human malfunction in industrial installations. Journal of Occupational Accidents, 4, 311–335.CrossRefGoogle Scholar
  35. Reason, J. T. (1979). Actions not as planned: The price of automatization. In G. Underwood & R. Stevens (Eds.), Aspects of consciousness: Vol. 1. Psychological issues. London: Wiley.Google Scholar
  36. Reason, J. T. (1984a). Absent-mindedness and cognitive control. In J. Harris & P. Morris (Eds.). Everyday memory, actions and absent-mindedness. London: Academic Press.Google Scholar
  37. Reason, J. T. (1984b). Lapses of attention. In R. Parasuraman & D. Davies (Eds.), Varieties of attention. New York: Academic Press.Google Scholar
  38. Reason, J. T. (1984c). Order of output in category generation. Paper given to the Cognitive Section, British Psychological Society, Oxford.Google Scholar
  39. Reason, J. T. (1986). Naming the white of an egg: Evidence for semantic constraints upon phonological priming. Unpublished report.Google Scholar
  40. Reason, J. T., & Lucas, D. (1984). Using cognitive diaries to investigate naturally occurring memory blocks. In J. Harris & P. Morris (Eds.), Everyday memory, actions and absent-mindedness. London: Academic Press.Google Scholar
  41. Reason, J. T., & Mycielska, K. (1982). Absent-minded? The psychology of mental lapses and everyday errors. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  42. Reason, J. T., Horrocks, B., & Bailey, S. (1986). Multiple search processes in knowledge, retrieval: Similarity-matching frequency-gambling and inference. Unpublished report.Google Scholar
  43. Roediger, H. L., & Crowder, R. G. (1976). A serial position effect in the recall of United States Presidents. Bulletin of the Psychonomic Society, 8, 275–278.Google Scholar
  44. Savin, H. B. (1963). Word frequency effect and errors in the perception of speech. Journal of the Acoustical Society of America, 35, 200–206.CrossRefGoogle Scholar
  45. Solomon, R. L., & Postman, L. (1952). Frequency of usage as a determinant of recognition thresholds for words. Journal of Experimental Psychology, 43, 195–201.PubMedCrossRefGoogle Scholar
  46. Spence, J. T. (1963). Contribution of response bias to recognition thresholds. Journal of Abnormal and Social Psychology, 66, 339–344.PubMedCrossRefGoogle Scholar
  47. Thorndike, E. L. (1911). Animal intelligence. New York: Macmillan.Google Scholar
  48. Timpanaro, S. (1976). The Freudian slip. London: New Left Press.Google Scholar
  49. Underwood, B. J., & Schulz, R. W. (1960). Meaningfulness and verbal learning. Philadelphia: Lippincott.Google Scholar
  50. Woods, D. D. (1984). Some results on operator performance in emergency events. Institute of Chemical Engineers Symposium Series No. 90, 13-21.Google Scholar
  51. Zipf, G. K. (1945). The meaning-frequency relationships of words. Journal of General Psychology, 33, 251–256.PubMedCrossRefGoogle Scholar
  52. Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge, MA: Addison-Wesley.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • James T. Reason
    • 1
  1. 1.Department of PsychologyUniversity of ManchesterManchesterUK

Personalised recommendations