Skip to main content

Supramolecular Membrane Structure

  • Chapter
Molecular Biology of Membranes
  • 131 Accesses

Abstract

To this point we have been concerned with the molecular and macromolecular building blocks of membranes. This chapter will focus on how these building blocks are assembled to become functional membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Further Reading

X-ray and Electron Diffraction and Image Processing

  • Amos, L. A. 1985. Structure of muscle filaments studied by electron microscopy. Annu. Rev. Biophys. Biophys. Chem. 14:291–313.

    Article  PubMed  CAS  Google Scholar 

  • Baker, T. S., et al. 1985. Gap junction structures. VII. Analysis of connexon images obtained with cationic and anionic negative stains. J. Mol. Biol. 184:81–98.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W., and Kubier, O. 1978. Topographic study of the cell surface of Micrococcus radiodurans. Proc. Natl. Acad. Sci. USA 75:5525–5528.

    Article  PubMed  CAS  Google Scholar 

  • Baumeister, W., et al. 1989. Principles of organization in eubacterial and archaebacterial surface proteins. Can. J. Microbiol. 35:215–227.

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman, P. J., et al. 1987a. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512.

    Article  PubMed  CAS  Google Scholar 

  • Bjorkman, P J., et al. 1987b. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 329:512–518.

    Article  PubMed  CAS  Google Scholar 

  • Brisson, A., and Unwin, P. T. N. 1985. Quaternary structure of the acetylcholine receptor. Nature 315:474–477.

    Article  PubMed  CAS  Google Scholar 

  • Butt, H.-J., et al. 1990. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope. Biophys. J. 58:1473–1480.

    Article  PubMed  CAS  Google Scholar 

  • Caspar, D. L. D., and Kirschner, D. A. 1971. Myelin membrane structure at 10Ã… resolution. Nature New Biol. 231:46–52.

    Article  PubMed  CAS  Google Scholar 

  • Caspar, D. L. D., et al. 1977. Gap junction structures. I. Correlated electron microscopy and x-ray diffraction. J. Cell Biol. 74:605–628.

    Article  PubMed  CAS  Google Scholar 

  • Deisenhofer, J., et al. 1984. X-ray structure analysis of a membrane protein complex. Electron density map at 3Ã… resolution and a model of the chromophores of the photosynthetic reaction center from Rhodopseudomonas viridis. J. Mol. Biol. 180:385–398.

    Article  CAS  Google Scholar 

  • Dobler, M. 1972. The crystal structure of nonactin. Helv. Chim. Acta 55:1371–1384.

    Article  PubMed  CAS  Google Scholar 

  • Dorset, D. L., et al. 1983. Two-dimensional crystal packing of matrix porin: A channel forming protein in Escherichia coli outer membranes. J. Mol. Biol. 165:701–710.

    Article  PubMed  CAS  Google Scholar 

  • Downing, K. H. 1991. Spot-scan imaging in transmission electron microscopy. Science 251:53–59.

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg, D., et al. 1984. Three-dimensional structure of membrane and surface proteins. Annu. Rev. Biochem. 53:595–623.

    Article  PubMed  CAS  Google Scholar 

  • Engelhardt, H., et al. 1986. Stoichiometric model of the photosynthetic unit of Ectothiorhodospira halochloris. Proc. Natl. Acad. Sci. USA 83:8972–8976.

    Article  PubMed  CAS  Google Scholar 

  • Fox, R. O., and Richards, E M. 1982. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-Ã… resolution. Nature 300:325–330.

    Article  PubMed  CAS  Google Scholar 

  • Franks, N. R, et al. 1982. Structure of myelin lipid bilayers changes during maturation. J. Mol. Biol. 155:133–153.

    Article  PubMed  CAS  Google Scholar 

  • Freymann, D. M., et al. 1984. 6Ã…-resolution x-ray structure of a variable surface glycoprotein from Trypanosoma brucei. Nature 311:167–169.

    Article  CAS  Google Scholar 

  • Garavito, R. M., et al. 1983. X-ray diffraction analysis of matrix porin, an integral membrane protein from Escherichia coli outer membranes. J. Mol. Biol. 164:313–327.

    Article  CAS  Google Scholar 

  • dauert, A. M., and Thornley, M. J. 1969. The topography of the bacterial cell wall. Annu. Rev. Microbiol. 23:159–198.

    Article  Google Scholar 

  • Harrison, S. C, et al. 1971. Lipid and protein arrangement in bacteriophage PM2. Nature New Biol. 299:197–201.

    Google Scholar 

  • Hayward, S. B., and Stroud, R. M. 1981. Projected structure of purple membrane determined to 3.7Ã… resolution by low temperature electron microscopy. J. Mol. Biol. 151:491–517.

    Article  PubMed  CAS  Google Scholar 

  • Hebert, H., et al. 1985. Structure of two-dimensional crystals of membrane-bound Na+, K+-ATPase as analyzed by correlation averaging. J. Ultrastruct. Res. 92:28–35.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R. 1975. The structure of the purple membrane from Halobacterium halobium: Analysis of the x-ray diffraction pattern. J. Mol. Biol. 93:123–138.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., and Unwin, P. N. T. 1975. Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257:28–31.

    Article  PubMed  CAS  Google Scholar 

  • Henderson, R., et al. 1990. Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J. Mol. Biol. 213:899–929.

    Article  PubMed  CAS  Google Scholar 

  • Hitchock, P. B., et al. 1974. Structural chemistry of 1,2 dilauroyl DL-phosphatidylethanolamine: Molecular conformation and intermolecular packing of phospholipids. Proc. Natl. Acad. Sci. USA 71:3036–3040.

    Article  Google Scholar 

  • Hoh, J. H., et al. 1991. Atomic force microscopy and dissection of gap junctions. Science 253:1405–1408.

    Article  PubMed  CAS  Google Scholar 

  • Jap, B. K., et al. 1991. Structural architecture of an outer membrane channel as determined by electron crystallography. Nature 350:167–170.

    Article  PubMed  CAS  Google Scholar 

  • Kilbourn, B. T., et al. 1967. Structure of the K+ complex with nonactin, a macrolide antibiotic possessing highly specific K+ transport properties. J. Mol. Biol. 30:559–563.

    Article  PubMed  CAS  Google Scholar 

  • Kuhlbrandt, W. 1984. Three-dimensional structure of the light harvesting chlorophyll a/b-protein complex. Nature 307:478–480.

    Article  Google Scholar 

  • Levine, Y. K., and Wilkins, M. H. F 1971. Structure of oriented lipid bilayers. Nature New Biol. 230:69–72.

    Article  PubMed  CAS  Google Scholar 

  • McDaniel, R. V., and Mclntosh, T. J. 1986. X-ray diffraction studies of cholera toxin receptor GM1 Biophys. J. 49:96–98.

    Article  Google Scholar 

  • Mannella, C. A. 1986. Mitochondrial outer membrane channel (VDAC, porin) two-dimensional crystals from Neurospora. Methods Enzymol. 125:595–611.

    Article  PubMed  CAS  Google Scholar 

  • Michel, H., and Oesterhelt, D. 1980. Three-dimensional crystals of membrane proteins: Bacteriorhodopsin. Proc. Natl. Acad. Sci. USA 77:1283–1285.

    Article  PubMed  CAS  Google Scholar 

  • Michel, H., et al. 1982. Three-dimensional crystals of membrane protein complexes. The photosynthetic reaction centre from Rhodopseudomonas viridis. J. Mol. Biol. 158:567–572.

    Article  PubMed  CAS  Google Scholar 

  • Milburn, M. V, et al. 1991. Three-dimensional structures of the ligand-binding domain of the bacterial aspartate receptor with and without a ligand. Science 254:1342–1347.

    Article  PubMed  CAS  Google Scholar 

  • Ottensmeyer, FR 1979. Molecular structure determination by high-resolution electron microscopy. Annu. Rev. Biophys. Bioeng. 8:129–144.

    Article  PubMed  CAS  Google Scholar 

  • Pascher, I., and Sundell, S. 1977. Molecular arrangements in sphingolipids. The crystal structure of cerebroside. Chem. Phys. Lipids 20:175–191.

    Article  CAS  Google Scholar 

  • Pollard, T. D., and Cooper, J. A. 1986. Actin and actin-binding proteins. A critical evaluation of mechanisms and functions. Annu. Rev. Biochem. 55:987–1035.

    Article  PubMed  CAS  Google Scholar 

  • Rachel, R. et al. 1986. Projected structure of the surface protein of Deinococcus radiodurans determined to 8 Ã… resolution by cryomicroscopy. Ultramicroscopy 20:305–316.

    Article  CAS  Google Scholar 

  • Rossmann, M. G., and Henderson, R. 1982. Phasing electron diffraction amplitudes with the molecular replacement method. Acta Crystallogr. Sect. A 38:13–20.

    Article  Google Scholar 

  • Sass, H. J., et al. 1989. Densely packed β-structure at the protein-lipid interface of porin is revealed by high-resolution cryo-electron microscopy. J. Mol. Biol. 209:171–175.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss, R., and Mandelkow, E. 1983. Three-dimensional reconstruction of tubulin sheets and re-investigation of microtubule surface lattice. J. Mol. Biol. 170:471–496.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. P. E., et al. 1987. Images of a lipid bilayer at molecular resolution by scanning tunneling microscopy. Proc. Natl. Acad. Sci. USA 84:969–972.

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima, C, and Unwin, P. N. T. 1988. Ion channel of acetylcholine receptor reconstructed from images of postsynaptic membranes. Nature 336:247–250.

    Article  PubMed  CAS  Google Scholar 

  • Unwin, R N. T., and Ennis, P D. 1984. Two configurations of a channel-forming membrane protein. Nature 307:609–613.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, B. A., and Ravikumar, K. 1988. The gramicidin pore: Crystal structure of a cesium complex. Science 241:182–187.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H., et al. 1990. Thickness determination of biological samples with z-calibrated scanning tunneling microscope. Proc. Natl. Acad. Sci. USA 87:9343–9347.

    Article  PubMed  CAS  Google Scholar 

  • Weis, W, et al. 1988. Structure of the influenza virus haemagglutinin complexed with its receptor, sialic acid. Nature 333:426–431.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, M. S., et al. 1991. Molecular architecture and electrostatic properties of a bacterial porin. Science 254:1627–1630.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins, M. H. E, et al. 1971. Bilayer structure of membranes. Nature New Biol. 230:72–76.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, I. A., et al. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3Ã… resolution. Nature 289:366–373.

    Article  PubMed  CAS  Google Scholar 

  • Zampighi, G. et al. 1984. The structural organization of (Na+ + K+)-ATPase in purified membranes. J. Cell Biol. 98:1851–1864.

    Article  PubMed  CAS  Google Scholar 

  • Zasadzinski, J. A. N., et al. 1988. Scanning tunneling microscopy of freeze-fracture replicas of biomembranes. Science 239:1013–1015.

    Article  PubMed  CAS  Google Scholar 

Transmission Electron Microscopy

  • Andrews, L. D., and Cohen, A. J. 1983. Freeze-fracture studies of photoreceptor membranes: New observations bearing upon the distribution of cholesterol. J Cell Biol. 97:749–755.

    Article  PubMed  CAS  Google Scholar 

  • Armond, P. A., and Staehelin, L. A. 1979. Lateral and verticle displacement of integral membrane proteins during lipid phase transition in Anacystis nidulans. Proc. Natl. Acad. Sci. USA 76:1901–1905.

    Article  PubMed  CAS  Google Scholar 

  • Branton, D. 1966. Fracture faces of frozen membranes. Proc. Natl. Acad. Sci. USA 55:1048–1056.

    Article  PubMed  CAS  Google Scholar 

  • Branton, D., and Park, R. B. 1967. Subunits in chloroplast lamellae. J. Ultrastruct. Res. 19:283–303.

    Article  PubMed  CAS  Google Scholar 

  • Deamer, D. W, and Branton, D. 1967. Fracture planes in an ice-bilayer model membrane system. Science 158:655–657.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, K. A. 1976. Analysis of membrane halves: Cholesterol. Proc. Natl. Acad. Sci. USA 73:173–177.

    Article  PubMed  CAS  Google Scholar 

  • Fisher, K., and Branton, D. 1974. Application of the freeze fracture technique to natural membranes. Methods Enzymol. 32B:35–44.

    Article  Google Scholar 

  • Forsman, C. A., and Pinto da Silva, P. 1988. Fracture-flip: New high-resolution images of cell surfaces after carbon stabilization of freeze-fractured membranes. J. Cell Sci. 90:531–541.

    Google Scholar 

  • Grant, C. W. M., and McConnell, H. M. 1974. Glycophorin in lipid bilayers. Proc. Natl. Acad. Sci. USA 71:4653–4657.

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J. 1980. Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84:560–583.

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J., and Kirchhausen, T. 1985. Deep etch views of clathrin assemblies. J. Ultrastruct. Res. 92:21–27.

    Article  Google Scholar 

  • Heuser, J., and Salpeter, S. R. 1979. Organization of acetylcholine receptors in quick-frozen, deepetched, and rotary-replicated Torpedo postsynaptic membrane. J. Cell Biol. 82:150–173.

    Article  PubMed  CAS  Google Scholar 

  • Heuser, J., et al. 1979. Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J. Cell Biol. 81:275–300.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., and Heuser, J. 1982. The inside and outside of gap junction membranes visualized by deep etching. Cell 30:395–406.

    Article  PubMed  CAS  Google Scholar 

  • Hong, K., and Hubbell, W. L. 1972. Preparation and properties of phospholipid bilayers containing rhodopsin. Proc. Natl. Acad. Sci. USA 69:2617–2621.

    Article  PubMed  CAS  Google Scholar 

  • Napolitano, C. A., et al. 1983. Organization of calcium pump protein dimers in the isolated sarcoplasmic reticulum membranes. Biophys. J. 42:119–125.

    Article  PubMed  CAS  Google Scholar 

  • Ossmer, R. et al. 1986. Immunocytochemical localization of component c of the methyl reductase system in Methanococcus voltae and Methanobacterium thermoautotrophicum. Proc. Natl. Acad. Sci. USA 83:5789–5792.

    Article  PubMed  CAS  Google Scholar 

  • Pinto da Silva, P, and Branton, D. 1970. Membrane splitting in freeze-etching. J. Cell Biol. 45:598–605.

    Article  PubMed  CAS  Google Scholar 

  • Pinto da Silva, P, and Nicolson, G. L. 1974. Freeze-etch localization of concanavalin A receptors to the membrane intercalated particles of human erythrocyte ghost membranes. Biochim. Biophys. Acta 363:311–319.

    Article  CAS  Google Scholar 

  • Pinto da Silva, P et al. 1971. Localization of A antigen sites on human erythrocyte ghosts. Nature 232:194–196.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, M, et al. 1984. Immunocytochemical localization of carbon monoxidase in Pseudomonas carboxydovorans. J. Biol. Chem. 259:14788–14792.

    PubMed  CAS  Google Scholar 

  • Rohde, M., et al. 1985. Attachment of CO dehydrogenase to the cytoplasmic membrane is limiting the respiratory rate of Pseudomonas carboxydovorans. FEMS Microbiol. Lett. 28:141–148.

    Article  CAS  Google Scholar 

  • Segrest, J. P., et al. 1974. Association of the membrane penetrating polypeptide segment of the human erythrocyte MN-glycoprotein with phospholipid bilayers. I. Formation of freeze-etch intra-membrane particles. Proc. Natl Acad. Sci. USA 71:3294–3298.

    Article  PubMed  CAS  Google Scholar 

  • Shnitka, T. K., and Seligman, A. M. 1971. Ultrastructural localization of enzymes. Annu. Rev. Biochem. 40:375–396.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. J., and Schick, A. F 1961. The properties of specific stains for electron microscopy prepared by the conjugation of antibody molecules with ferritin. J. Biophys. Biochem. Cytol. 9:519–537.

    Article  PubMed  CAS  Google Scholar 

  • Sowers, A. E., and Hackenbrock, C. R. 1981. Rate of lateral diffusion of intramembrane particles: Measurement by electrophoretic displacement and rerandomization. Proc. Natl. Acad. Sci. USA 78:6246–6250.

    Article  PubMed  CAS  Google Scholar 

  • Staehelin, L. A. 1976. Reversible particle movements associated with the unstacking and restacking of chloroplast membranes in vitro. J. Cell Biol. 71:136–158.

    Article  CAS  Google Scholar 

  • Tillack, T. W., and Marchesi, V. T. 1970. Demonstration of the outer surface of freeze-etched red blood cell membranes. J. Cell Biol. 45:649–653.

    Article  PubMed  CAS  Google Scholar 

  • Uusitalo, R. J., and Karnovsky, M. J. 1977. Surface localization of 5′-nucleotidase on the mouse lymphocyte. J. Histochem. Cytochem. 25:87–96.

    Article  PubMed  CAS  Google Scholar 

  • Yu, J., and Branton, D. 1976. Reconstitution of intramembrane particles in recombinants of erythrocyte protein band 3 and lipid: Effects of spectrin-actin association. Proc. Natl. Acad. Sci. USA 73:3891–3895.

    Article  PubMed  CAS  Google Scholar 

Scanning Electron Microscopy

  • Burwen, S. J., and Satir, B. H. 1977. Plasma membrane folds on the mast cell surface: Their relationship to secretory activity. J Cell Biol. 74:690–697.

    Article  PubMed  CAS  Google Scholar 

  • Cammisuli, S., and Wofsy, L. 1976. Hapten-sandwich labeling. III. Bifunctional reagents for immunospecific labeling of cell surface antigens. J. Immunol. 117:1695–1704.

    PubMed  CAS  Google Scholar 

  • Carter, D. R., and Wofsy, L. 1976. Immunospecific labeling of mouse lymphocytes in the scanning electron microscope. J. Supramol. Struct. 5:139–153.

    Article  PubMed  CAS  Google Scholar 

  • Crusberg, T. C, et al. 1979. Spreading behavior and surface characteristics of young and senescent WI38 fibroblasts revealed by scanning electron microscopy. Exp. Cell Res. 118:39–46.

    Article  PubMed  CAS  Google Scholar 

  • Hayat, M. A. 1978. Introduction to Biological Scanning Electron Microscopy. University Park Press, Baltimore.

    Google Scholar 

  • Jan, L. Y., and Revel, J.-P. 1975. Hemocyanin-antibody labeling of rhodopsin in mouse retina for a scanning electron microscope study. J. Supramol. Struct. 3:61–66.

    Article  PubMed  CAS  Google Scholar 

  • Linthicum, D. S., and Sell, S. 1975. Topography of lymphocyte surface immunoglobulin using scanning immunoelectron microscopy. J. Ultrastruct. Res. 51:55–68.

    Article  PubMed  CAS  Google Scholar 

  • Molday, R. S. 1976a. A scanning electron microscope study of concanavalin A receptors on retinal rod cells labeled with latex microspheres. J. Supramol. Struct. 4:549–557.

    Article  PubMed  CAS  Google Scholar 

  • Molday, R. 1976b. Concanavalin A and wheat germ agglutinin receptors on Dictylostelium discoideum. Their visualization by scanning electron microscopy with microspheres. J. Cell Biol. 71:314–322.

    Article  PubMed  CAS  Google Scholar 

  • Petty, H. R., et al. 1981. Disappearance of macrophage surface folds after antibody-dependent phagocytosis. J. Cell Biol. 98:223–229.

    Article  Google Scholar 

  • Porter, K. R., et al. 1973. A scanning electron microscope study of surface features of viral and spontaneous transformants of mouse BALB/3T3 cells. J. Cell Biol. 59:633–642.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K. 1980. Scanning electron microscopy of intracellular structures. Int. Rev. Cytol. 68:97–125.

    Article  PubMed  CAS  Google Scholar 

  • Weiler, N. K. 1974. Visualization of concanavalin A-binding sites with scanning electron microscopy. J. Cell Biol. 63:699–707.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Petty, H.R. (1993). Supramolecular Membrane Structure. In: Molecular Biology of Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1146-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1146-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1148-3

  • Online ISBN: 978-1-4899-1146-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics