Molecular Evaluation of Plant Genetic Resources

  • Michael T. Clegg
Part of the Stadler Genetics Symposia Series book series (SGSS)

Abstract

A central problem of biology is the description, classification and management of organic diversity. In one form or another this theme pervades biological science from the ecosystem level down to the population level. Diversity also has a central role in the science of genetics which originated from attempts to uncover the rules that govern the transmission of phenotypic variations between generations. Every student of introductory biology learns that the Mendelian method requires alternate allelic forms of a gene for any genetic analysis. Similarly, plant and animal improvement programs are absolutely dependent on useful genetic variants to achieve their goals of greater agricultural productivity (Brown et al., 1988; Day et al., 1991).

Keywords

Migration Maize Manifold Covariance Recombination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allard, R.W., 1989, Genetic changes associated with the evolution of adaptedness in cultivated plants and their wild progenitors, J. Heredity 79:225–238.Google Scholar
  2. Allard, R.W., Babbel, G., Clegg, M.T., and Kahler, A.L., 1972, Evidence for coadaptation in Avena barbata, Proc. Natl Acad. Sci. USA 69: 3043–3048.PubMedCrossRefGoogle Scholar
  3. Appels, R., and Dvorak, J., 1982, Relative rates of divergence of spacer and gene sequences within the rDNA region of species of the Triticeae: Implications for the maintenance of homogeneity of a repeated gene family, Theor. Appl. Genet. 63:361–365.CrossRefGoogle Scholar
  4. Bretting, P.K., Goodman, M.M., and Stuber, C.W., 1990, Isozymatic variation in Guatemalan races of maize, Arner. J. Bot. 77:211–225.CrossRefGoogle Scholar
  5. Brown, A.H.D., and Clegg, M.T., 1983, Isozyme assessment of plant genetic resources, in: “Isozymes: Current Topics in Biological and Medical Research Volume 11: Medical and Other Applications,” M.C. Rattazzi, J.C. Scandalios, and G.S. Whitt, eds., Alan R. Liss, New York, pp 285–295.Google Scholar
  6. Brown, A.H.D., Frankel, O.H., Marshall, D.R., and Williams, J.T., (eds.), 1989, “The Use of Plant Genetic Resources,” Cambridge University Press, Cambridge, pp 382.Google Scholar
  7. Clark, A. G., and Kao, T.-H., 1991, Excess nonsynonymous substitution at shared polymorphic sites among self-incompatibility alleles of Solanaceae, Proc. Natl. Acad. Sci. USA, (in press).Google Scholar
  8. Clegg, M.T., 1990, Molecular diversity in plant populations, in: “Plant Population Genetics, Breeding and Genetic Resources,” A.H.D. Brown, M.T. Clegg, A.L. Kahler and B.S. Weir, eds., Sinauer Associates, Sunderland, MA. pp 98–115.Google Scholar
  9. Clegg, M.T., and Allard, R.W., 1972, Patterns of genetic variation in the slender wild oat, Avena barbata, Proc. Natl. Acad. Sci. USA 69:1820–1824.CrossRefGoogle Scholar
  10. Clegg, M.T., and Durbin, M.L., 1990, Molecular approaches to the study of plant biosystenatics, Aust. Syst. Bot. 3:1–8.CrossRefGoogle Scholar
  11. Clegg, M.T., Learn, G.L., and Golenberg, E.M., 1991, Molecular evolution of chloroplast DNA, in: “Evolution at the Molecular Level,” R.K. Selander, A.G. Clark, and T.S. Wittham, eds., Sinauer Associates, Sunderland, MA. pp 135–149.Google Scholar
  12. Clegg, M.T., Rawson, J.R.Y., and Thomas, K., 1984, Chloroplast DNA variation in pearl millet and related species, Genetics 106:449–461.PubMedGoogle Scholar
  13. Clegg, M.T., Brown, A.H.D., and Whitfeld, P.R., 1984, Chloroplast DNA diversity in wild and cultivated barley:implications for genetic conservation, Genet. Res. 43:339–343.CrossRefGoogle Scholar
  14. Cohen, J.L., Williams, J.T., Plucknett, D.L., and Shands, H., 1991, Ex situ conservation of plant genetic resources: Global development and environmental concerns, Science 253:866–872.PubMedCrossRefGoogle Scholar
  15. Curtis, S.E., and Clegg, M.T., 1984, Molecular evolution of chloroplast DNA sequences, Molec. Biol. Evol. 1:291–301.PubMedGoogle Scholar
  16. Crow, J.F., and Kimura, M., 1970, “An Introduction to Population Genetics Theory,” Harper and Row, New York, pp 591.Google Scholar
  17. Day, P.R., Allard, R.W., Alvim, P. de T., Ashri, A., Barton, J.H., Buttel, F.H., Chang, T.-T., Creech, J.L., Dietz, S.M., Evenson, R.E., Fitzhugh, H.A., Goodman, M.M., Hardon, J.J., Johnson, V.A., Marshall, D.R., Maunder, A.B., Qualset, C.O., Paroda, R.S., Sastrapradja, S., Smith, C., Spence, J.A., Timothy, D.H., Wilkes, H.G., and Withers, L.A., 1991, “Managing Global Genetic Resources: The US National Plant Germplasm System,” National Academy Press, Washington, DC.Google Scholar
  18. Doebley, J., Stec, A., Wendel, J., and Edwards, M., 1990, Genetic and morphological analysis of a rnaize-teosinte F2 population: Implications for the origin of maize, Proc. Natl. Acad. Sci. USA 87:9888–9892.PubMedCrossRefGoogle Scholar
  19. Doebley, J.F., Goodman, M.M., and Stuber, C.W., 1985, Isoyme variation in the races of maize from Mexico, Arner. J. Bot. 72:629–639.CrossRefGoogle Scholar
  20. Dvorak, J., 1990, Evolution of multigene families: the ribosomal RNA loci of wheat and related species, in: “Plant Population Genetics, Breeding and Genetic Resources,” A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir, eds., Sinauer Associates, Sunderland, MA. pp 83–97.Google Scholar
  21. Ehrlich, P.R. and Wilson, E.O., 1991, Biodiversity studies: science policy, Science 253:758–762.PubMedCrossRefGoogle Scholar
  22. Frankel, O.H., and Bennett, E., 1970, Genetic resources, in: “Genetic Resources in Plant: Their Exploitation and Conservation,” O.H. Frankel, and E. Bennett, eds., Cambridge University Press, Cambridge, pp 7–17.Google Scholar
  23. Furnier, G.R., Cummings, M.P., and Clegg, M.T., 1990, Evolution of the avocados as revealed by DNA restriction fragment variation, J. Heredity 81:183–188.Google Scholar
  24. Garcia, P., Vences, F.J., Perez de la Vega, M., and Allard, R.W., 1989, Allelic and genotypic composition of ancestral Spanish and colonial Californian gene pools of Avena barbata: Evolutionary implications, Genetics 122:687–694.PubMedGoogle Scholar
  25. Gaut, B.S., and Clegg, M.T., 1991, Molecular evolution of alcohol dehydrogenase 1 in members of the grass family, Proc. Natl. Acad. Sci. USA 88:2060–2064.PubMedCrossRefGoogle Scholar
  26. Gepts, P., 1990, Biochemical evidence bearing on the domestication of Phaseolus (Fabaceae) beans, Econ. Bot. 44:28–38.CrossRefGoogle Scholar
  27. Gepts, P., 1991, Biotechnology sheds light on bean domestication in Latin America, Diversity 7:49–50.Google Scholar
  28. Gepts, P., and Clegg, M.T., 1989, Genetic diversity in pearl millet (Pennisetum glaucum [L.] R. Br.) at the DNA sequence level, J. Heredity 80:203–208.Google Scholar
  29. Goodman, M.M., 1990, Genetic and germplasm stocks worth conserving, J. Heredity 81:11–16.Google Scholar
  30. Hamrick J.L., and Allard, R.W., 1972, Microgeographical variation in alloyme frequencies in Avena barbata, Proc. Natl. Acad. Sd. USA. 69:2000–2004.CrossRefGoogle Scholar
  31. Hamrick, J.L. and Godt, 1990, Allozyme diversity in plant species, in: “Plant Population Genetics, Breeding and Genetic Resources,” A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir, eds., Sinauer Associates, Sunderland, MA, pp 43–03.Google Scholar
  32. Helentjaris, T., King, G., Slocum, G., Siedenstang, C., and Wegman, S., 1985, Restriction fragment polymorphism as probes for plant diversity and their development as tools for applied plant breeding, PlantUol. Biol. 5:109–118.Google Scholar
  33. Holwerda, B.C., Jana, S., and Crosby, W.L., 1986, Chloroplast and mitochondrial DNA variation in Hordeum vulgare and Hordeum spontaneum, Genetics 114:1271–1291.PubMedGoogle Scholar
  34. Hudson, R.R., 1991, Gene genealogies and the coalescent process, Oxford Surveys Evol. Biol. 7:1–44.Google Scholar
  35. Kimura, M., 1983, “The Neutral Theory of Molecular Evolution,” Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  36. Kimura, M., and Ohta, T., 1971, “Theoretical Aspects of Population Genetics,” Princeton University Press, NJ.Google Scholar
  37. Krietman, M., 1991, Detecting selection at the DNA level, in: “Evolution at the Molecular Level,” R.K. Selander, A.G. Clark, and T.S. Wittham, eds., Sinauer Associates, Sunderland, MA, pp 204–221.Google Scholar
  38. Lewontin, R.C., 1974, “Genetic Basis of Evolutionary Change,” Columbia University Press, New York, pp 346.Google Scholar
  39. Loaiza-Figueroa, F., Ritland, K., Cancino, J.A.L., and Tanksley, S.D., 1989, Patterns of genetic variation of the genus Capsicum (Solanaceae) in Mexico, Pl. Syst. Evol. 165:159–188.CrossRefGoogle Scholar
  40. Long, E.O., and Dawid, I.B., 1980, Repeated genes in eucaroytes, Ann. Rev. Biochem. 49:727–765.PubMedCrossRefGoogle Scholar
  41. Miller, J.C., and Tanksley, S.D., 1990, RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon, Theor. Appl. Genet. 80:437–448.Google Scholar
  42. Neale, D.B., Saghai-Maroof, M.A., Allard, R.W., Zang, Q., and Jorgensen, R.A., 1988, Chloroplast DNA diversity in populations of wild and cultivated barley, Genetics 120:1105–1110.PubMedGoogle Scholar
  43. Nei, M., and Li, W.-H., 1972, Linkage disequilibrium in subdivided populations, Genetics 75:213–219.Google Scholar
  44. Nevo, E., 1987, Plant genetic resources: Prediction by isoyme markers and ecology, in: “Isozymes: Current Topics in Biological and Medical Research, Volume 16:Agriculture, Physiology and Medicine,” M.C. Rattazzi, J.C. Scandalios, and G.S. Whitt, eds., Alan R. Liss, New York, pp 247267.Google Scholar
  45. Nevo, E., and Beiles, A., 1989, Genetic diversity of wild emmer wheat in Israel and Turkey, Theor. Appl. Genet. 77:421–455.CrossRefGoogle Scholar
  46. Nevo, E., Grama, A., Beiles, A., and Golenberg, E.M., 1986, Resources of highprotein genotypes in wild wheat, Triticum dicoccoides in Israel: Predictive method by ecology and allozyme markers, Genetica 68:215–227.CrossRefGoogle Scholar
  47. Nevo, E., Moseman, J.G., Beiles, A., and Zohary, D., 1985, Patterns of resistance of Israeli wild emmer wheat to pathogens, I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust, Genetica 67:209–222.CrossRefGoogle Scholar
  48. Perez de la Vega, M., Garcia, P., and Allard, R.W., 1991, Multilocus genetic structure of ancestral Spanish and colonial Californian populations of Avena barbata, Proc. Natl. Acad. Sci. USA 88:12021206.CrossRefGoogle Scholar
  49. Rick, C.M., 1991, Tomato resources of South America reveal many genetic treasurers, Diversity 7:54–56.Google Scholar
  50. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W., 1984, Ribosomal DNA spacer-length polymorphism in barley: Mendelian inheritance, chromosomal location, and population dynamics, Proc. Natl. Acad. Sci. USA 81:8014–8018.PubMedCrossRefGoogle Scholar
  51. Saghai-Maroof, M.A., Allard, R.W., and Zhang, Q., 1990, Genetic diversity and ecogeographical differentiation among ribosomal DNA alleles in wild and cultivated barley, Proc. Natl. Acad. Sci. USA 87:8486–8490.PubMedCrossRefGoogle Scholar
  52. Soule, M.E., 1991, Conservation: Tactics for a constant crisis, Science 253:744–750.PubMedCrossRefGoogle Scholar
  53. Stuber, C., 1990, Molecular markers in the manipulation of quantitative characters, in: “Plant Population Genetics, Breeding and Genetic Resources,” A.H.D. Brown, M.T. Clegg, A.L. Kahler, and B.S. Weir, eds., Sinauer Associates, Sunderland MA, pp 334–350.Google Scholar
  54. Tanksley, S.D., 1983, Molecular markers in plant breeding, Plant Molec. Biol. Rpt. 1:3–8.CrossRefGoogle Scholar
  55. Williams, J.G.K., Kubelik, A.R., Livak, K.J., Antoni, J., and Tingey, S.V., 1990, DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, NucleicAcids Res. 18:6531–6535.CrossRefGoogle Scholar
  56. Wright, S., 1969, “Theory of Gene Frequencies,” University of Chicago Press. Chicago, 111.Google Scholar
  57. Zhang, Q., Saghai-Maroof, M.A., and Allard, R.W., 1990, Effects on adaptedness of variations in ribosomal DNA copy number in populations of wild barley (Hordeum vulgare ssp. spontaneum), Proc. Acad. Natl. Sci. USA 87:8741–8745.CrossRefGoogle Scholar
  58. Zurawski, G., and Clegg, M.T., 1987, Evolution of higher-plant DNA-encoded genes: Implications for structure, function and phylogenetic studies, Annu. Rev. Plant Physiol. 38:391–418.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1993

Authors and Affiliations

  • Michael T. Clegg
    • 1
  1. 1.Department of Botany and Plant SciencesUniversity of CaliforniaRiversideUSA

Personalised recommendations