Skip to main content

Applications of Microwave Discharges to Elemental Analysis

  • Chapter
Microwave Discharges

Part of the book series: NATO ASI Series ((NSSB,volume 302))

Abstract

Atomic spectrometry is one of the oldest methods of elemental analysis. Over the last several decades it has been used in analytical laboratories under various forms (emission, absorption, fluorescence) and with a large number of atom generating devices (flame, arc, spark, electrothermal atomizer, plasma).1 During the initial development period, atomic spectrometry was confined to atomic emission, until the work by Walsh in 1955 on atomic absorption spectrometry.2 During the subsequent twenty years, the latter was the most widely used form of atomic spectrometry. In the mid seventies, atomic emission spectrometry underwent a revival through the development of plasma sources as atomization and excitation devices. Finally, in the mid eighties, plasma based mass spectrometry became a more common form of elemental analysis. Presently, atomic emission, atomic absorption and atomic mass spectrometries are the most common tools used by the analytical chemist to perform elemental analysis. In the case of atomic emission and mass spectrometries, a large number of different plasmas have been used and new plasmas sources are constantly being designed and improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ingle and S. Crouch, “Spectrochemical Analysis”, Prentice Hall, Englewood Cliffs (1988).

    Google Scholar 

  2. B. Welz, “Atomic Absorption Spectrometry”, VCH Editors, New-York (1985).

    Google Scholar 

  3. T. Nakahara, Applications of Hydride Generation Techniques in Atomic Absorption, Atomic Fluorescence and Atomic Emission Spectroscopy, Prog. Analyt. Atom. Spectrosc. 6: 163 (1983).

    CAS  Google Scholar 

  4. J. Caruso, K. Wolnick, and F. Fricke, Injection of gaseous samples into plasmas, in: “Inductively Coupled Plasmas in Analytical Atomic Spectrometry”, A. Montaser and D.W. Golightly,ed., VCH Editors, New-York (1987).

    Google Scholar 

  5. M. Cresser, Pneumatic nebulization, in: “Sample Introduction in Atomic Spectroscopy”, J. Sneddon, ed., Elsevier, Amsterdam (1990).

    Google Scholar 

  6. K.C. Ng and J. Caruso, Electrothermal vaporization, in: “Sample Introduction in Atomic Spectroscopy”, J. Sneddon, ed., Elsevier, Amsterdam (1990).

    Google Scholar 

  7. M. W. Routh and M. W. Tikkanen, Introduction of solids into plasmas, in: “Inductively Coupled Plasmas in Analytical Atomic Spectrometry”, A. Montaser and D.W. Golightly,ed., VCH Editors, New-York (1987).

    Google Scholar 

  8. C.D. Keirs and T.J. Vickers, D.C. Plasma Arcs for Elemental Analysis, Appl. Spectrosc. 31: 273 (1977).

    Article  CAS  Google Scholar 

  9. R. Skogerboe and I. T. Urasa, Evaluation of the Analytical Capabilities of a DC Plasma-Echelle Spectrometer System, Appl. Spectrosc. 32: 527 (1978).

    Article  CAS  Google Scholar 

  10. V. Fassel, Quantitative Elemental Analyses by Plasma Emission Spectroscopy, Science 202: 183 (1978).

    Article  CAS  Google Scholar 

  11. S. Greenfield, H. McD. McGeachin, and P.B. Smith, Plasma Emission Sources in Analytical Spectroscopy, Talanta 23: 1 (1976).

    Article  CAS  Google Scholar 

  12. A. Zander and G.Hieftje, Microwave-supported Discharges, Appl. Spectrosc. 35: 357 (1981).

    Article  CAS  Google Scholar 

  13. J.P. Matousek, B.J. Off, and M. Selby, Microwave-Induced Plasmas: Implementation and Application, Prog. Anal. Atom. Spectrosc. 7: 275 (1984).

    CAS  Google Scholar 

  14. J. Hubert, M. Moisan, and A. Ricard, A New Microwave Plasma at Atmospheric Pressure, Spectrochim. Acta 33B: 1 (1979).

    Google Scholar 

  15. M. Moisan and Z. Zakrzewski, New Surface Wave Launchers for Sustaining Plasma Columns at Submicrowave Frequencies (1–300 MHz), Rev. Sci. Instrum. 58: 1895 (1987).

    Article  Google Scholar 

  16. T. Hasegawa and H. Haraguchi, Fundamental properties of inductively coupled plasma, in: “Inductively Coupled Plasmas in Analytical Atomic Spectrometry”, A. Montaser and D.W. Golightly, ed., VCH Editors, New-York (1987).

    Google Scholar 

  17. C. Trassy and J.M. Mermet, “Les Applications Analytiques des Plasmas HF”, Lavoisier Technique and Documentation, Paris, France (1984).

    Google Scholar 

  18. M. Blades, B.L. Caughlin, Z.H. Walker, and L.L. Burton, Excitation, Ionization, and Spectral Line Emission in the Inductively Coupled Plasma, Prog. Anal. Spectrosc. 10: 57 (1987).

    CAS  Google Scholar 

  19. M. H. Abdallah and J. M. Mermet, Comparison of Temperature Measurements in ICP and MIP with Ar and He as Plasma Gas, Spectrochim. Acta 37B: 391 (1982).

    Article  Google Scholar 

  20. P. S. Moussounda, P. Ranson, and J.M. Mermet, Spatially Resolved Spectroscopic Diagnostics of an Argon MW Produced by Surface Wave Propagation (Surfatron), Spectrochim. Acta 40B: 641 (1985).

    Article  Google Scholar 

  21. A. Besner, M. Moisan, and J. Hubert, Fundamentals Properties of Radiofrequency and Microwave Surface-wave Induced Plasmas, J. Anal. Atom. Spectrom. 3: 863 (1988).

    Article  CAS  Google Scholar 

  22. M.H. Abdallah, S. Coulombe, J.M. Mermet, and J. Hubert, An Assessment of an Atmospheric-Pressure Helium Microwave Plasma Produced by a Surfatron as an Excitation Source in Atomic Emission-Spectroscopy, Spectrochim. Acta 37B: 583 (1982).

    Article  Google Scholar 

  23. J. Caruso, Microwave Induced Plasmas for Atomic Spectrometry, J. Res. Nat. Bur. Standards 93: 447 (1988).

    Article  CAS  Google Scholar 

  24. L.J. Galante, M. Selby, and G.M. Hieftje, A Low-Power Surfatron Source for the Atomic-EmissionSpectrometric Detection of Non-Metals in Aqueous Solution, Appl. Spectrosc. 4: 559 (1988).

    Article  Google Scholar 

  25. M.C. Quintero Ortega, J. Cotrino Bautista, M. Saez, A. Menendez Garcia, J.E. Sanchez Uria, and A. Sanz Medel, Determination of Iodide by Low Power Surfatron Microwave Induced Plasma after Iodine Continuous Generation, Spectrochim. Acta 47B: 79 (1992).

    Article  Google Scholar 

  26. J. Cotrino, J.E. Sanchez Uria, and A. Sanz Medel, Determination of Bromine by Low Power Surfatron Microwave Induced Plasma after Bromine Continuous Generation, Talanta 39: 341 (1992).

    Article  Google Scholar 

  27. T. Nakahara, S. Yamada, and T. Wasa, Continuous-Flow Determination of Trace Iodine by Atmospheric-Pressure Helium Microwave-induced Plasma Atomic Emission Spectrometry using Generation of Volatile Iodine from Iodide, Appl. Spectrosc. 44: 1673 (1990).

    Article  CAS  Google Scholar 

  28. P.C. Uden, “Element-Specific Chromatographic Detection by Atomic Emission Spectroscopy”, American Chemical Society, Washington (1992).

    Book  Google Scholar 

  29. C.I. M. Beenakker, Evaluation of a Microwave-induced Plasma in Helium at Atmospheric Pressure as an Element-selective Detector for Gas Chromatography, Spectrochim. Acta 32B: 173 (1977).

    Article  Google Scholar 

  30. B.D. Quimby, P.C. Uden, and R.M. Barnes, Atmospheric Pressure Helium Microwave Detection System for Gas Chromatography, Anal. Chem. 50: 2112 (1978).

    Article  CAS  Google Scholar 

  31. B.D. Quimby, M.F. Delaney, P.C. Uden, and R.M. Barnes, Determination of Trihalomethanes in Drinking Water by Gas Chromatography with a Microwave Plasma Emission Detector, Anal. Chem. 51: 875 (1979).

    Article  CAS  Google Scholar 

  32. K. Tanabe, H. Haraguchi, and K. Fuwa, Application of an Atmospheric Pressure helium Microwave-induced Plasma as an Element-selective Detector for Gas Chromatography, Spectrochim. Acta 36B: 633 (1981).

    Article  Google Scholar 

  33. S.A. Estes, P.C. Uden, and R.M. Barnes, Microwave-Excited Atmospheric Pressure Helium Plasma Emission Detection Characteristics in Fused Silica Capillary Gas Chromatography, Anal. Chem. 53: 1829 (1981).

    Article  CAS  Google Scholar 

  34. T.H. Risby and Y. Talmi, Microwave induced electrical discharge detectors for gas chromatography, CRC Crit. Rev. Anal. Chem. 14: 231 (1983).

    Article  CAS  Google Scholar 

  35. D. Deruaz and J.M. Mermet, Gas Chromatography Microwave Induced Plasma Atomic Emission-Spectrometry, Analusis 14: 107 (1986).

    CAS  Google Scholar 

  36. P.C. Uden, Y. Yoo, T. Wang, and Z. Cheng, Element-Selective Gas Chromatographic Detection by Atomic Plasma Emission Spectroscopy. Review and Developments, J. Chrom. 468: 319 (1989).

    Article  Google Scholar 

  37. J.J. Sullivan and B.D. Quimby, Water-cooled Gas Discharge Detector, U.S. Patent # 4, 654, 504 (1987).

    Google Scholar 

  38. B.D. Quimby and J.J. Sullivan, Evaluation of a Microwave Cavity, Discharge Tube and Gas Flow System for Combined Gas Chromatography-Atomic Emission Detection, Anal. Chem. 62: 1027 (1990).

    Article  CAS  Google Scholar 

  39. J.J. Sullivan and B.D. Quimby, Characterization of a Computerized Photodiode Array Spectrometer for Gas Chromatography-Atomic Emission Spectrometry, Anal. Chem. 62: 1034 (1990).

    Article  CAS  Google Scholar 

  40. G. Chevrier,T. Hanai, C.K. Tran, and J. Hubert, Développement d’un détecteur à plasma micro-onde pour chromatographie en phase gazeuse, Can. J. Chem. 60: 898 (1982).

    Article  Google Scholar 

  41. Y. Takigawa, T. Hanai, and J. Hubert, Microwave Induced Plasma Emission Spectrophotometer Combined with a Photodiode Array Monitor for Capillary Column Gas Chromatography, J. High Resol. Chrom. 9: 698 (1986).

    Article  CAS  Google Scholar 

  42. B. Rivière, J.M. Mermet, and D. Deruaz., Study of a Microwave-induced Plasma (Surfatron) as a Detector in Capillary-column Gas Chromatography with reference to Pesticides, J. Anal. Atom. Spectrom. 2: 705 (1987).

    Article  Google Scholar 

  43. A. Besner and J. Hubert, Effects of Dopants on Tin Emission in a Helium Microwave-induced Plasma, J. Anal. Atom. Spectrom. 3: 381 (1988).

    Article  CAS  Google Scholar 

  44. C. Lauzon, K. C. Tran, and J. Hubert, Multi-Wavelength Detection in Gas Chromatography with Microwave-induced Plasma Atomic Emission Fourier-Transform Spectrometry, J. Anal. Atom. Spectrom. 3: 901 (1988).

    Article  CAS  Google Scholar 

  45. S. Coulombe, K.C. Tran, and J. Hubert, Helium surface-wave plasmas as atomic emission detectors in gas chromatography, in: “Element Specific Chromatographic Detection by Atomic Emission Spectroscopy”, P.C. Uden, ed., American Chemical Society, Washington (1992).

    Google Scholar 

  46. L.J. Galante, M. Selby, D.R., G. M. Hieftje, and M. Novotny, Characterization of Microwave-Induced Plasma as a Detector for Supercritical Fluid Chromatography, Anal. Chem. 60: 1370 (1988).

    Article  CAS  Google Scholar 

  47. D.R. Luffer,L.J. Galante, P.A. David, M. Novotny and, G.M. Hieftje, Evaluation of a Supercritical Fluid Chromatograph Coupled to a Surface-Wave-Sustained Microwave-Induced Plasma, Anal. Chem. 60: 1365 (1988).

    Google Scholar 

  48. B. Rivière, J.M. Mermet, and D. Deruaz, Spectroscopic Evaluation of a Carbon-Dioxide and a Helium Carbon Dioxide Microwave-Induced Plasma (Surfatron), J. Anal. Atom. Spectrom. 3: 551 (1988).

    Article  Google Scholar 

  49. D. Huang, D.C. Liang, and M.W. Blades, Capacitively Coupled Plasma Detector for Gas Chromatography, J. Anal. Atom. Spectrom. 4: 789 (1989).

    Article  CAS  Google Scholar 

  50. G. Knapp, E. Leitner, M. Michaelis, B. Platzer, and A. Schalk, Element Specific GC-Detection by Plasma Atomic Emission Spectroscopy. A Powerful Tool in Environmental Analysis, Intern J. Environ. Anal. Chem. 38: 369 (1990).

    Article  CAS  Google Scholar 

  51. H. Uchida, A. Berthed, and J.D. Winefordner, Determination of non-metallic elements by capacitively coupled helium microwave plasma atomic emission spectrometry with capillary gas chromatography, Analyst, 115: 933 (1990).

    Article  CAS  Google Scholar 

  52. R.L.A. Sing, C. Lauzon, K.C. Tran, and J. Hubert, The Influence of Discharge-Tube Cooling on the Performance of Surface-Wave Plasmas intended as Element-Specific Detectors for Gas Chromatography, Appl. Spectrosc. 46: 430 (1992).

    Article  CAS  Google Scholar 

  53. M.L. Bruce, J.M.Workman, J.A. Caruso and D.J.Lahti, A Low-Flow Laminar Flow Torch for Microwave-Induced Plasma Emission Spectrometry, Appl. Spectrosc. 39: 935 (1985).

    Article  CAS  Google Scholar 

  54. P.R. Fielden, M.R. Jiang and R.D. Snook, A Laminar Flow Microwave Plasma Detector for Gas Chromatography, Appl. Spectrosc. 43: 1444 (1989).

    Article  CAS  Google Scholar 

  55. K.J. Slatkavitz, L.D. Hoey, P.C. Uden and R.M. Barnes, Element Specific Detection of Organosilicon Compounds by Gas Chromatography Atmospheric Pressure Microwave Induced Helium Plasma Spectrometry, Anal. Chem. 57: 1846 (1985).

    Article  CAS  Google Scholar 

  56. D.L. Haas, J.W. Carnahan and J.A. Caruso, An Internally Tuned TM010 Microwave Resonant Cavity for Moderate Power Microwave Induced Plasmas, Appl. Spectrosc. 37: 82 (1983).

    Article  CAS  Google Scholar 

  57. A. Bollo-Kamara and E.G. Codding, Considerations in the design of a microwave induced plasma utilizing the TMoio cavity for optical emission spectroscopy, Spectrochim. Acta 36B: 973 (1981).

    Article  Google Scholar 

  58. S.R. Goode, B. Chambers and N.P. Buddin, A Critical Evaluation of The Tangential Flow Torch Microwave-Induced Plasma Detector for Gas Chromatography, Appl. Spectrosc. 37: 439 (1983).

    Article  CAS  Google Scholar 

  59. S.R. Goode, B. Chambers and N.P. Buddin, Use of A Tangential-Flow Torch With a Microwave-Induced Plasma Emission Detector for Gas Chromatography, Spectrochim. Acta 40B: 329 (1985).

    Article  Google Scholar 

  60. K.G. Michlewicz and J.W. Carnahan, A Microwave Induced Plasma System for the Maintenance of Moderate Power Plasmas of Helium, Argon, Nitrogen and Air, Anal. Chem. 58: 3122 (1986).

    Article  CAS  Google Scholar 

  61. R.D. Satzger and T.W. Brueggemeyer, Preliminary Investigation of a Tangential Flow Torch with Coupling Probe Injector for Helium Microwave Induced Plasma Mass Spectrometry, Miloochim. Acta 3: 239 (1989).

    Article  CAS  Google Scholar 

  62. M.R. Jiang, P.R. Fielden and R.D. Snook, Performance of a Laminar Flow Torch Microwave Plasma Detector for Gas Chromatography, Appl. Spectrosc. 45: 227 (1991).

    Article  CAS  Google Scholar 

  63. G.S. Sobering, T.D. Bailey and T.C. Farrar, A Simple Torch Design for a Microwave-Induced Plasma, Appl. Spectrosc. 42: 1023 (1988).

    Article  CAS  Google Scholar 

  64. A.R. Date and A.L. Gray, “Applications of Inductively Coupled Mass Spectrometry,” Blackie, Glascow (1989).

    Google Scholar 

  65. D.J. Douglas and J.B. French, Elemental analysis with a microwave-induced plasma/quadrupole mass spectrometer system, Anal. Chem. 53: 37 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hubert, J., Sing, R., Boudreau, D., Tran, K.C., Lauzon, C., Moisan, M. (1993). Applications of Microwave Discharges to Elemental Analysis. In: Ferreira, C.M., Moisan, M. (eds) Microwave Discharges. NATO ASI Series, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1130-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1130-8_33

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1132-2

  • Online ISBN: 978-1-4899-1130-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics