Skip to main content

Thermal Discharges: Experiments and Diagnostics

  • Chapter
Book cover Microwave Discharges

Abstract

In plasma processing commonly a distinction is made between low pressure (or low (ion) temperature) plasmas and thermal plasmas1. The transition between these two classes is gradual. Plasmas cover a wide spectrum in electron density (1015/m3–1023/m3) and ionization degree (10−7–1). In low pressure plasmas2 as RF—discharges the ionization degree is usually small and these plasmas are characterized by an abundance of molecular fragments and large ambipolar fields. The high electron density thermal plasmas have a high ionization degree and nearly full dissociation and a high heavy particle temperature. In this paper we will focuss on these plasmas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refereences

  1. P. Fauchais, J.F. Coudert and M. Vardelle, “Diagnostics in thermal plasma processing”, Ch. lin Plasma diagnostics, Vol. 1, 0. Auciello Sc D.L. Flamm (ed.), Academic Press, Boston (1989).

    Google Scholar 

  2. V.M. Donally, “Optical diagnostic techniques for low pressure plasmas and plasma prosesses”, Ch. 1.

    Google Scholar 

  3. J. Mostaghimi, P. Proulx and M.I. Boulos, “A two-temperature model of the inductively coupled rf plasma”, J. Appl. Phys. 61: 1753 (1987).

    Article  CAS  Google Scholar 

  4. D.C. Schram, I.J.M.M. Raaijmakers, B. van der Sijde, H.J.W. schenkelaars and P.W.J.M. Boumans, “Approaches for clarifying excitation mechanisms in spectrochemical excitation sources”, Spectrochim. Acta 38B: 1545–1557 (1983).

    Article  Google Scholar 

  5. J.A.M. van der Mullen, “Excitation equilibria in plasmas; A classification”, Physics Report 191: 109 (1990).

    Article  CAS  Google Scholar 

  6. R.J. Rosado, “An investigation of non-equilibrium effects in thermal argon plasmas”, thesis Eindhoven University of Technology (1981).

    Google Scholar 

  7. C.J. Timmermans, R.J. Rosado and D.C. Schram, “An investigation of non-equilibrium effects in thermal argon plasmas”, Z. Naturforsch. 40A: 810 (1985).

    Google Scholar 

  8. S.I. Branginskii, “Transport processes in a plasma”, Reviews of Plasma Physics, I:205, ed. M.A. Leontovich, Plenum, New York (1965).

    Google Scholar 

  9. R.S. Devoto, “Transport properties of ionized monatomic gases”, Phys. Fluids 9::1230 (1966), “Transport coefficients of partially ionized argon”, Phys. Fluids 10:354, (1967), “Transport coeffcients of ionized argon”, Phys. Fluids 16: 616 (1973).

    CAS  Google Scholar 

  10. G.M.W. Kroesen, D.C. Schram, C.J. Timmermans and J.C.M. de Haas, “The energy balance of a plasma in partial local thermodynamic equilibrium”, IEEE Trans. on Plasma Sc 18: 985 (1990).

    Article  Google Scholar 

  11. A.T.M. Wilbers, J.J. Beulens and D.C. Schram, “Radiative energy loss in a two-temperature argon plasma”, JQSRT 46: 385 (1991).

    Article  CAS  Google Scholar 

  12. J.J. Beulens, D. Milojevic, D.C. Schram and P.M. Vallinga, “A two-dimensional nonequilibrium model of cascaded arc plasma flows”, Phys. Fluids B3: 2548 (1991).

    Article  Google Scholar 

  13. J.J. Beulens, “Surface modification using a cascade arc plasma source”, thesis Eindhoven University of Technology (1992).

    Google Scholar 

  14. I.J.M.M. Raaijmakers, P.W.J.M. Boumans, B. van der Sijde and D.C. Schram, “A theoretical study and experimental investigation of non-LTE phenomena in an inductively argon plasma - I. Characterization of the discharge”, Spectrochim. Acta 38B: 697 (1983).

    Article  Google Scholar 

  15. V. Helbig, “Diagnostics of thermal plasmas”, Pure and Appl. Chem. 60: 675 (1988).

    CAS  Google Scholar 

  16. F.H.A.G. Fey, W.W. Stoffels, J.A.M. van der Mullen, B. van der Sijde and D.C. Schram, “Instantaneous and delayed responses of line intensities to interruption of the Rf power in an argon inductively coupled plasma”, Spectrochim. Acta 46B: 885 (1991).

    Article  Google Scholar 

  17. M.C.M. van de Sanden, “The expanding plasma jet, experiments and model”, thesis Eindhoven University of Technology (1991).

    Google Scholar 

  18. M. Huang, G.M. Hieftje, “A new procedure for determination of electron temperatures and electron concentrations by Thomson scattering from analytical plasmas”, Spectrochimica Acta 44B: 291 (1989).

    Article  Google Scholar 

  19. G.J. Meeusen, E.A. E.shov—Pavlov, R.F.G. Meulenbroeks, M.C.M. van de Sanden and D.C. Schram, “Emission spectroscopy on a supersonically expanding argon/silane plasma”, J. Appl. Phys. 71: 1 (1992).

    Google Scholar 

  20. D. Schlüter, “Die Emissionskontinua thermischer Edelgasplasmen”, Z. Phys. 210: 80 (1968).

    Article  Google Scholar 

  21. D. Hofsaess, “Emission continua of rare gas plasmas”, JQSRT 19: 339 (1978).

    Article  CAS  Google Scholar 

  22. S.E. Schneehage, M. Kock and E. Schulz—Sulde. Schulz—Sulde, “The continuous emission of an argon arc”, J. Phys. B: Atom. Molec. Phys. 15: 1131 (1982).

    Article  Google Scholar 

  23. A.T.M. Wilbers, G.M.W. Kroesen, C.J. Timmermans and D.C. Schram, “The continuum emission of an arc plasma”, J. Quant. Spectrosc. Radiat. Transfer 45: 1 (1991).

    Article  CAS  Google Scholar 

  24. A.T.M. Wilbers, “A wall stabilized arc as a light source for spectroscopic techniques”, thesis Eindhoven University of Technology (1991).

    Google Scholar 

  25. C.J. Timmermans, G.M.W. Kroesen, P.M. Vallinga and D.C. Schram, “Plasma parameters and weakly non—ideal behaviour of a high density, super—atmospheric 2kA cascade arc in argon”, Z. Naturforsch. 43A: 806 (1988).

    Google Scholar 

  26. C.J. Timmermans, “An investigation of non—equilibrium effects in thermal plasmas”, thesis Eindhoven University of Technology (1984).

    Google Scholar 

  27. P.H.M. Vaessen, “Heat and momentum transfer from an atmospheric argon hydrogen plasma jet to spherical particles”, thesis Eindhoven University of Technology (1984).

    Google Scholar 

  28. D.C. Schram, P.H.M. Vaessen, L.U.E. Konings and G.M.W. Kroesen, “Characteristics of a spray plasma”, Proc. ISPC-7, 3: 794 (1985).

    Google Scholar 

  29. G.M.W. Kroesen, C.J. Timmermans and D.C. Schram, “Expanding plasma used for plasma deposition”, Pure and Appl. Chem. 60: 795 (1988).

    CAS  Google Scholar 

  30. G.M.W. Kroesen, “Plasma deposition: investigations on a new approach”, thesis Eindhoven University of Technology (1988).

    Google Scholar 

  31. J.J. Beulens, M.J. de Graaf, G.M.W. Kroesen and D.C. Schram, “Axial temperatures and electron densities in a flowing cascaded arc”, Mat. Res. Soc. Symp. Proc. 190: 311–316 (1991).

    Article  Google Scholar 

  32. R.E.J. van den Bercken et al., private communication (internal report Eindhoven University of Technology.

    Google Scholar 

  33. A.J.M. Buuron, D.K. Otorbaev, J.J. Beulens, A.G.M. Kiers, H.M.M. de Jong, M.C.M. van de Sanden and D.C. Schram, “Absorption spectroscopy on an expanding argon arc plasma”, Conf. Second congrés europeén sur la génie des procédés plasmas thermiques, 7–9 sept. 1992, Gif—sur—Yvette.

    Google Scholar 

  34. R.F.G. Meulenbroeks, P.A.A. van der Heijden, M.C.M. van de Sanden and D.C. Schram, “Fabry—Pérot line shape analysis on a supersonically expanding argon plasma”, submitted to J. Appl. Phys..

    Google Scholar 

  35. M. Dudeck, G. Poissant, B.R. Rowe, J.L. Queffelec, and M. Morlais, “Plasma diagnostics by Langmuir probes and UV absorption”, J. Phys. D:Appl. Phys. 16: 995 (1983).

    Article  CAS  Google Scholar 

  36. S. Nowak, J.A.M. van der Mullen, B. van der Sijde and D.C. Schram, “Spectroscopic determination of electron density and temperature profiles in an inductively—coupled argon plasma”, J. Quant. Spectrosc. Radiat. Transfer 41: 177 (1989).

    Article  CAS  Google Scholar 

  37. S. Nowak, J.A.M. van der Mullen and D.C. Schram, “Electron density and temperature determination in an ICP using a non—equilibrium concept”, Spectrochim. Acta 43B: 1235 (1988).

    Article  Google Scholar 

  38. J.C.M. de Haas, Non Equilibrium in Flowing atmospheric plasmas, thesis Eindhoven University of Technology (1986).

    Google Scholar 

  39. M.J. de Graaf, R.P. Dahiya, J.L. Jauberteau, F.J. de Hoog, M.J.F. van de Sande and D.C. Schram, “Thermal plasma source of hydrogen atoms and ions”, Coll. de Phys., Coll. C5 suppl. 18, 51: 387–393 (1990).

    Google Scholar 

  40. M.J. de Graaf et al. private communication (internal report Eindhoven University of Technology).

    Google Scholar 

  41. M. Pealat, J.P. Taran, M. Bacal and F. Hillion, “Rovibrational molecular populations, atoms, and negative ions in H2 and D2 magnetic multicusp discharges”, J. Chem. Phys. 82: 4943 (1985).

    Article  CAS  Google Scholar 

  42. B.L. Preppernau, D.A. Dolson, R.A. Gottscho and T.A. Miller, “Temporally resolved laser diagnostic measurements of atomic hydrogen concentrations in RF plasma discharges”, Plasma Chem. and Plasma Proc. 9: 157 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schram, D.C. et al. (1993). Thermal Discharges: Experiments and Diagnostics. In: Ferreira, C.M., Moisan, M. (eds) Microwave Discharges. NATO ASI Series, vol 302. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1130-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1130-8_16

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1132-2

  • Online ISBN: 978-1-4899-1130-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics