Transformation and Mutagenic Effects Induced by Herpes Simplex Virus Types 1 and 2

  • Laure Aurelian
Part of the Infectious Agents and Pathogenesis book series (IAPA)


Compelling evidence indicates that cancer is a multistep process resulting from the accumulation of many genetic defects in the tumor progenitor cell. Malignant transformation, also mediated by DNA and RNA viruses, is an in vitro model of carcinogenesis in animals. The events triggering transformation often result from the transcription of genes, called oncogenes. These are part of a virus or are altered cellular genes, called protooncogenes, that transmit growth signals from the extracellular environment to the cell nucleus. The oncogenes of animal DNA tumor viruses are integral parts of the viral genome. Those of the retroviruses are normal or slightly modified cellular genes that were appropriated from the cell or were activated in the host cell by virus infection. Here we briefly review the available evidence on transformation by the human herpes simplex viruses (HSV), with particular emphasis on the various functions with which it is associated.


Ribonucleotide Reductase Focus Formation Immediate Early Herpes Simplex Virus Growth Factor Receptor Kinase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duff, R., and Rapp, F., 1973, Oncogenic transformation of hamster cells after exposure to herpes simplex virus type 2, Nature New Biol. 233:48–50.Google Scholar
  2. 2.
    Duff, R., and Rapp, F., 1973, Oncogenic transformation of hamster embryo cells after exposure to inactivated herpes simplex virus type 1, J. Viol. 12:209–217.Google Scholar
  3. 3.
    Darai, G., and Munk, K., 1976, Neoplastic transformation of rat embryo cells with herpes simplex virus, Int. J. Cancer 18:469–481.PubMedCrossRefGoogle Scholar
  4. 4.
    Kutinova, L., Vonka, V., and Broucek, J., 1973, Increased oncogenicity and synthesis of herpesvirus antigens in hamster cells exposed to herpes simplex type-2 virus, J. Natl. Cancer Inst. 50:759–766.PubMedGoogle Scholar
  5. 5.
    Kimura, S., Flannery, V. L., Levy, B., and Schaffer, P. A., 1975, Oncogenic transformation of primary hamster cells by herpes simplex virus type 2 (HSV-2) and an HSV-2 temperature-sensitive mutant, Int. J. Cancer 15:786–798.PubMedCrossRefGoogle Scholar
  6. 6.
    Flannery, V. L., Courtney, R. J., and Schaffer, P. A., 1977, Expression of an early, nonstructural antigen of herpes simplex virus in cells transformed in vitro by herpes simplex virus, J. Virol. 21:284–291.PubMedGoogle Scholar
  7. 7.
    Collard, W., Thornton, H., and Green, M., 1973, Cells transformed by human herpesvirus type 2 transcribe virus specific RNA sequences shared by herpesvirus types 1 and 2, Nature New Biol. 243:264–266.PubMedGoogle Scholar
  8. 8.
    Macnab, J. C. M., 1974, Transformation of rat embryo cells by temperature-sensitive mutants of herpes simplex virus, J. Gen. Virol. 24:143–153.PubMedCrossRefGoogle Scholar
  9. 9.
    Macnab, J. C. M., 1979, Tumor production by HSV-2 transformed lines in rats and the varying response to immunosuppression, J. Gen. Virol. 43:39–56.PubMedCrossRefGoogle Scholar
  10. 10.
    Macnab, J. C. M., Visser, L., Jamieson, A. T., and Hay, J., 1980, Specific viral antigens in rat cells transformed by herpes simplex virus type 2 and in rat tumours induced by inoculation of transformed cells, Cancer Res. 40:2074–2079.PubMedGoogle Scholar
  11. 11.
    Kessous, A., Bibar-Hardy, V., Suh, M., and Simard, D., 1979, Analysis of chromosome nucleic acids and polypeptides in hamster cells transformed by herpes simplex type 2, Cancer Res. 39:3225–3234.PubMedGoogle Scholar
  12. 12.
    Skinner, G. B. R., 1976, Transformation of primary hamster embryo fibroblasts by type 2 herpes simplex virus: Evidence for a hit and run mechanism, Br. J. Exp. Pathol. 57:361–376.PubMedGoogle Scholar
  13. 13.
    Minson, A. C., Thouless, M. E., Eglin, R. P., and Darby, G., 1976, The detection of virus DNA sequences in a herpes type 2 transformed hamster cell line (333-8-9), Int. J. Cancer 17:493–500.PubMedCrossRefGoogle Scholar
  14. 14.
    Manak, M. M., Aurelian, L., and Ts’o, P. O. P., 1981, Focus formation and neoplastic transformation by herpes simplex virus type 2 inactivated intracellularly by 5-bromo-2′-deoxyuridine and near UV light, J. Virol. 40:289–300.PubMedGoogle Scholar
  15. 15.
    Aurelian, L., Manak, M. M., McKinlay, M., Smith, C. C., Klacsmann, K. T., and Gupta, P. K., 1981, “The herpesvirus hypothesis”—Are Koch’s postulates satisfied? Gynecol. Oncol. 12: S56–S87.PubMedCrossRefGoogle Scholar
  16. 16.
    Schlehofer, J. R., and zu Hausen, H., 1982, Induction of mutations within the host genome by partially inactivated herpes simplex virus type 1, Virology 122:471–475.PubMedCrossRefGoogle Scholar
  17. 17.
    Shillitoe, E. J., Matney, T. S., and Conley, A. J., 1986, Induction of mutations in bacteria by a fragment of DNA from herpes simplex virus type 1, Virus Res. 6:181–191.PubMedCrossRefGoogle Scholar
  18. 18.
    Huang, C. B., and Shillitoe, E. J., 1990, DNA sequence of mutations induced in cells by herpes simplex virus type-1, Virology 178:180–188.CrossRefGoogle Scholar
  19. 19.
    Huang, C. B., and Shilitoe, E. J., 1991, Analysis of complex mutations induced in cells by herpes simples virus type-1, Virology 181:620–629.CrossRefGoogle Scholar
  20. 20.
    Clarke, P., and Clements, J. B., 1991, Mutagenesis occurring following infection with herpes simplex virus does not require virus replication, Virology 182:597–606.PubMedCrossRefGoogle Scholar
  21. 21.
    Bauer, G., Kahl, S., Sawhney, I. S., Hofler, P., Gerspach, R., and Matz, B., 1992, Transformation of rodent fibroblasts by herpes simplex virus: presence of morphological transforming region I (mtrI) is not required for the maintenance of the transformed state, Int. J. Cancer 51:754–760.PubMedCrossRefGoogle Scholar
  22. 22.
    Pilon, L., Langelier, Y., and Royal, A., 1986, Herpes simplex virus type 2 mutagenesis: Characterisation of mutants induced at the hprt locus of non-permissive XC cells, Mol. Cell. Biol. 6:2977–2983.PubMedGoogle Scholar
  23. 23.
    Pilon, L., Kessous-Elbaz, A., Langelier, Y., and Royal, A., 1989, Transformation of NIH 3T3 cells by herpes simplex type 2 BglII N fragment and subfragments is independent from induction of mutation at the hprt locus, Biochem. Biophys. Res. Commun. 159:1249–1255.PubMedCrossRefGoogle Scholar
  24. 24.
    Gerspach, R., and Matz, B., 1988, Herpes simplex virus-directed overreplication of chromosomal DNA physically linked to the simian virus 40 integration site of a transformed hamster cell line, Virology 165:282–285.PubMedCrossRefGoogle Scholar
  25. 25.
    Schlehofer, J. R., Gissmann, L., Matz, B., and zur Hausen, H., 1983, Herpes simplex virus induced amplification of SV40 sequences in transformed Chinese hamster embryo cells, Int. J. Cancer 32:99–103.PubMedCrossRefGoogle Scholar
  26. 26.
    Matz, B., Schlehofer, J. R., and zur Hausen, H., 1984, Identification of a gene function of herpes simplex virus type I essential for amplification of simian virus 40 DNA sequences in transformed hamster cells, Virology 134:328–337.PubMedCrossRefGoogle Scholar
  27. 27.
    Matz, B., Schlehofer, J. R., zur Hausen, H., Huber, B., and Fanning, E., 1985, HSV and chemical carcinogen-induced amplification of SV40 DNA sequences in transformed cells is cell line dependent, Int. J. Cancer 35:521–525.PubMedCrossRefGoogle Scholar
  28. 28.
    Heilbronn, R., and zur Hausen, H., 1989, A subset of herpes simplex virus replication genes induces DNA amplification within the host cell genome, J. Virol. 63:3683–3692.PubMedGoogle Scholar
  29. 29.
    Danovich, R. M., and Frenkel, N., 1988, Herpes simplex virus induces the replication of foreign DNA, Mol. Cell. Biol. 8:3272–3281.PubMedGoogle Scholar
  30. 30.
    Brandt, C. R., McDougall, J. K., and Galloway, D. A., 1987, Synergistic interactions between human papilloma virus type-18 sequences, herpes simplex virus infection and chemical carcinogen treatment, in: Papillomaviruses, Cancer Cells, Vol. 5 (B. M. Steinberg, J. L. Brandsma, and L. B. Taichman, eds.), Cold Spring Harbor Laboratory, New York, pp. 179–186.Google Scholar
  31. 31.
    Marcon, M. J., and Kucera, L. S., 1979, Stimulation of human cell DNA synthesis by defective herpes simplex virus type 2, Virology 98:364–372.PubMedCrossRefGoogle Scholar
  32. 32.
    Kulomaa, P., Paavonen, J., and Lehtinen, M., 1992, Herpes simplex virus induces unscheduled DNA synthesis in virus-infected cervical cancer cell lines, Res. Virol. 143:351–359.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee, P.-G., Chang, J.-Y., Yen, M.-S., Cheng, Y C., and Nutter, L. ML, 1988, Enhancement of herpes simplex virus type 2 (HSV-2) DNA synthesis in infected cells that constitutively express the BglII-N region of the HSV-2 genome, Virus Genes 2:269–281.CrossRefGoogle Scholar
  34. 34.
    Filion, M., Skup, D., and Suh, M., 1988, Specific induction of cellular gene transcription in herpes simplex virus type 2-transformed cells, J. Gen. Virol. 69:2011–2019.PubMedCrossRefGoogle Scholar
  35. 35.
    Gervais, C., and Suh, M., 1990, Serum amyloid A protein-related mRNA expression in herpes simplex virus type 2-transformed hamster cells, Mol. Cell. Biol. 10:4412–4414.PubMedGoogle Scholar
  36. 36.
    Roddick, V. L., Krebs, C. R., Kucera, L. S., Daniel, L. W., and Waite, M., 1988, Phospholipid-sensitive, Ca2+-dependent protein kinase activity in rat embryo fibroblasts transformed by herpes simplex virus type 2, Oncology 45:197–201.PubMedCrossRefGoogle Scholar
  37. 37.
    Patel, R., Chan, W. L., Kemp, L. M., La Thangue, N. B., and Latchman, D. S., 1986, Isolation of cDNA clones derived from a cellular gene transcriptionally induced by herpes simplex virus, Nucleic Acids Res. 14:5629.PubMedCrossRefGoogle Scholar
  38. 38.
    Macnab, J. C. M., Orr, A., and La Thangue, N. B., 1985, Cellular proteins expressed in herpes simplex virus transformed cells also accumulate on herpes simplex virus infection, EMBO J. 4:3223–3228.PubMedGoogle Scholar
  39. 39.
    La Thangue, N. B., and Latchman, D. S., 1988, A cellular protein related to heat-shock protein 90 accumulates during herpes simplex virus infection and is overexpressed in transformed cells, Exp. Cell Res. 178:169–179.PubMedCrossRefGoogle Scholar
  40. 40.
    Goswami, B. B., 1987, Transcriptional induction of proto-oncogene fos by HSV-2, Biochem. Biophys. Res. Commun. 143:1055–1062.PubMedCrossRefGoogle Scholar
  41. 41.
    Boyd, A. L., Derge, J. G., and Hampar, B., 1978, Activation of endogenous type C virus in BALB/c mouse cells by herpesvirus DNA, Proc. Natl. Acad. Sci. USA 75:4558–4562.PubMedCrossRefGoogle Scholar
  42. 42.
    Boyd, A. L., Enquist, L., Vande Woude, G. F., and Hampar, B., 1980, Activation of mouse retrovirus by herpes simplex virus type 1 cloned DNA fragments, Virology 103:228–231.PubMedCrossRefGoogle Scholar
  43. 43.
    Hampar, B., 1981, Transformation induced by herpes simplex virus: A potentially novel type of virus-cell interaction, Adv. Cancer Res. 35:27–47.PubMedCrossRefGoogle Scholar
  44. 44.
    Hampar, B., Aaronson, S. A., Derge, J. G., Chakrabarty, M., Showalter, S. D., and Dunn, C. Y, 1976, Activation of an endogenous mouse type C virus by ultraviolet-irradiated herpes simplex virus types 1 and 2, Proc. Natl. Acad. Sci. USA 73:646–650.PubMedCrossRefGoogle Scholar
  45. 45.
    Macnab, J. C. M., 1975, Transformed cell lines produced by temperature sensitive mutants of herpes simplex types 1 and 2, in: Oncogenesis and Herpesviruses II (G. de The, M. A. Epstein, and H. zur Hausen, eds.), IARC., Lyon, pp. 227–236.Google Scholar
  46. 46.
    Macnab, J. C. M., 1987, Herpes simplex virus and human cytomegalovirus: Their role in morphological transformation and genital cancers, J. Gen. Virol. 68:2525–2550.PubMedCrossRefGoogle Scholar
  47. 47.
    Marsden, H. S., Crombie, I. K., and Subak-Sharpe, J. H., 1976, Control of protein synthesis in herpesvirus-infected cells: Analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17, J. Gen. Virol. 31:347–372.PubMedCrossRefGoogle Scholar
  48. 48.
    Preston, C. M., 1979, Control of herpes simplex virus type 1 mRNA synthesis in cells infected with wild-type virus or the temperature sensitive mutant tsK, J. Virol. 29:275–284.PubMedGoogle Scholar
  49. 49.
    Preston, V. G., 1981, Fine-structure mapping of herpes simplex virus type 1 temperature-sensitive mutations within the short repeat regions of the genome, J. Virol. 39:150–161.PubMedGoogle Scholar
  50. 50.
    Schek, N., and Bachenheimer, S. L., 1985, Degradation of cellular mRNAs induced by a virion-associated factor during herpes simplex virus infection of Vero cells, J. Virol. 55:601–610.PubMedGoogle Scholar
  51. 51.
    McGeoch, D.J., Dalrymple, M. A., Davison, A.J., Dolan, A., Frame, M. C., McNab, D., Perry, L. J., Scott, J. E., and Taylor, P., 1988, The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1, J. Gen. Virol. 69:1531–1574.PubMedCrossRefGoogle Scholar
  52. 52.
    Smith, C. C., Kulka, M., Wymer, J. P., Chung, T. D., and Aurelian, L., 1992, Expression of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10) is required for virus growth and neoplastic transformation, J. Gen. Virol. 73:1417–1428.PubMedCrossRefGoogle Scholar
  53. 53.
    Camacho, A., and Spear, P. G., 1978, Transformation of hamster embryo fibroblasts by a specific fragment of the herpes simplex virus genome, Cell 15:993–1002.PubMedCrossRefGoogle Scholar
  54. 54.
    Reyes, G. R., La Femina, R., Hayward, S. D., and Hayward, G. S., 1979, Morphological transformation by DNA fragments of human herpesviruses: Evidence for two distinct transforming regions in HSV-1 and HSV-2 and lack of correlation with biochemical transfer of the thymidine kinase gene, Cold Spring Harbor Symp. Quant. Biol. 44:629–641.CrossRefGoogle Scholar
  55. 55.
    O’Donnell, M. E., Elias, P., Funnell, B. E., and Lehman, I. R., 1987, Interaction between the DNA polymerase and single-stranded DNA-binding protein (infected cell protein 8) of herpes simplex virus 1, J. Biol. Chem. 262:4260–4266.PubMedGoogle Scholar
  56. 56.
    de Bruyn Kops, A., and Knipe, D. M., 1988, Formation of DNA replication structures in herpes virus-infected cells required a viral DNA binding protein, Cell 55:857–868.PubMedCrossRefGoogle Scholar
  57. 57.
    Boehmer, P. E., and Lehman, I. R., 1993, Herpes simplex virus type 1ICP8: Helix-destabilizing properties, J. Virol. 67:711–715.PubMedGoogle Scholar
  58. 58.
    Dutch, R. E., and Lehman, I. R., 1993, Renaturation of complementary DNA strands by herpes simplex virus type 1 ICP8, J. Virol. 67:6945–6949.PubMedGoogle Scholar
  59. 59.
    Shillitoe, E. J., Zhang, S., Wang, G., and Hung, C. B., 1993, Functions and proteins of herpes simplex virus type-1 that are involved in raising the mutation frequency of infected cells, Virus Res. 27:239–251.PubMedCrossRefGoogle Scholar
  60. 60.
    Macnab, J. C. M., and McDougall, J. K., 1980, Transformation by herpesviruses, in: The Human Herpesviruses (A. J. Nahmias, W. R. Dowdle, and R. F. Schinazi, eds.), Elsevier/North-Holland, New York, p. 634.Google Scholar
  61. 61.
    Galloway, D. A., and McDougall, J. K., 1981, Transformation of rodent cells by a cloned DNA fragment of herpes simplex virus type 2, J. Virol. 38:749–760.PubMedGoogle Scholar
  62. 62.
    Cameron, I. R., Park, M., Dutia, B. M., Orr, A., and MacNab, J. C. M., 1985, Herpes simplex virus sequences involved in the initiation of oncogenic morphological transformation of rat cells are not required for maintenance of the transformed state, J. Gen. Virol. 66:517–527.PubMedCrossRefGoogle Scholar
  63. 63.
    Peden, K., Mounts, P., and Hayward, G. S., 1982, Homology between mammalian cell DNA sequences and human herpesvirus genomes detected by a hybridisation procedure with high complexity probe, Cell 31:71–80.PubMedCrossRefGoogle Scholar
  64. 64.
    Jariwalla, R. J., Aurelian, L., and Ts’o, P. O. P., 1983, Immortalisation and neoplastic transformation of normal diploid cells by defined cloned DNA fragments of herpes simplex virus type 2, Proc. Natl. Acad. Sci. USA 80:5902–5906.PubMedCrossRefGoogle Scholar
  65. 65.
    McLauchlan, J., and Clements, J. B., 1983, DNA sequence homology between two co-linear loci on the HSV genome which have different transforming abilities, EMBO J. 2:1953–1961.PubMedGoogle Scholar
  66. 66.
    Huszar, D., and Bacchetti, S., 1983, Is ribonucleotide reductase the transforming function of herpes simplex virus 2? Nature 302:76–79.PubMedCrossRefGoogle Scholar
  67. 67.
    Galloway, D. A., Nelson, J. A., and McDougall, J. K., 1984, Small fragments of herpesvirus DNA with transforming activity contain insertion sequence-like structures, Proc. Natl. Acad. Sci. USA 81:4736–4740.PubMedCrossRefGoogle Scholar
  68. 68.
    van den Berg, F. M., van Amstel, P. J., and Walboomers, J. M. M., 1985, Construction of rat cell lines that contain potential morphologically transforming regions of the herpes simplex virus type 2 genome, Intervirology 24:199–210.PubMedCrossRefGoogle Scholar
  69. 69.
    Saavedra, C., and Kessous-Elbaz, A., 1985, Retention of herpes simplex virus type II sequences in BglII n transformed cells after cotransfection with a selectable marker, EMBO J. 4:3419–3426.PubMedGoogle Scholar
  70. 70.
    Kessous-Elbaz, A., Pelletier, M., Cohen, E. A., and Langelier, Y, 1989, Retention and expression of the left end subfragment of the herpes simplex virus type 2 BglII NDNA fragment do not correlate with tumorigenic conversion of NIH 3T3 cells, J. Gen. Virol. 70:2171–2177.PubMedCrossRefGoogle Scholar
  71. 71.
    Galloway, D. A., and McDougall, J. K., 1983, The oncogenic potential of herpes simplex viruses: Evidence for a “hit and run” mechanism, Nature 302:21–24.PubMedCrossRefGoogle Scholar
  72. 72.
    Rubin, G., 1983, Dispersed repetitive DNAs in drosophila, in: Mobile Genetic Elements (J. A. Shapiro, ed.), Academic Press, New York, pp. 329–361.Google Scholar
  73. 73.
    Lewin, B., 1983, Genes, John Wiley & Sons, New York, pp. 603–604.Google Scholar
  74. 74.
    Brandt, C. R., Buonagura, F. M., McDougall, J. K., and Galloway, D. A., 1987, Plasmid mediated mutagenesis of a cellular gene in transfected eukaryotic cells, Nucleic Acids Res. 15:561–573.PubMedCrossRefGoogle Scholar
  75. 75.
    Becjek, B., and Conley, A. J., 1986, A transforming plasmid from HSV-2 transformed cells contains rat DNA homologous to the HSV-1 and HSV-2 genomes, Virology 154:41–55.CrossRefGoogle Scholar
  76. 76.
    Smith, C. C., Wymer, J. P., Luo, J. H., and Aurelian, L., 1991, Genomic sequences homologous to the protein kinase region of the bifunctional herpes simplex virus type 2 protein ICP10, Virus Genes 5:215–226.PubMedCrossRefGoogle Scholar
  77. 77.
    Hayashi, Y., Iwasaka, T., Smith, C. C., Aurelian, L., Lewis, G. K., and Ts’o, P. O. P., 1985, Multistep transformation by denned fragments of herpes simplex virus type 2 DNA: Oncogenic region and its gene product, Proc. Natl. Acad. Sci. USA 82:8493–8497.PubMedCrossRefGoogle Scholar
  78. 78.
    Jariwalla, R. J., Aurelian, L., and Ts’o, P. O. P., 1980, Tumorigenic transformation induced by a specific fragment of DNA from herpes simplex virus type 2, Proc. Natl. Acad. Sci. USA 77:2279–2283.PubMedCrossRefGoogle Scholar
  79. 79.
    Jariwalla, R. J., Taczos, B., Jones, C., Ortiz, J., and Salimi-Lopez, S., 1986, DNA amplification and neoplastic transformation mediated by a herpes simplex DNA fragment containing cell related sequences, Proc. Natl. Acad. Sci. USA 83:1738–1742.PubMedCrossRefGoogle Scholar
  80. 80.
    Ali, M. A., McWeeney, D., Milosavljevic, A., Jurka, J., and Jariwalla, R. J., 1991, Enhanced malignant transformation induced by expression of a distinct protein domain of ribonucleotide reductase large subunit from herpes simplex virus type 2, Proc. Natl. Acad. Sci. USA 88:8257–8261.PubMedCrossRefGoogle Scholar
  81. 81.
    Krebs, C. R., Waite, M., Jariwalla, R., and Kucera, L. S., 1987, Induction of cellular functions in spontaneously immortalised rat 2 cells transfected with cloned herpes simplex virus type 2 (HSV-2) DNA, Carcinogenesis 8:183–185.PubMedCrossRefGoogle Scholar
  82. 82.
    Smith, C. C., Luo, J. H., Hunter, J. C. R., Ordonez, J. V., and Aurelian, L., 1994, The transmembrane domain of the large subunit of HSV-2 ribonucleotide reductase (ICP10) is required for protein kinase activity and transformation-related signaling pathways that result in ras activation. Virology 200:598–612.PubMedCrossRefGoogle Scholar
  83. 83.
    Chung, T. D., Wymer, J. P., Smith, C. C., Kulka, M., and Aurelian, L., 1989, Protein kinase activity associated with the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10), J. Virol. 63:3389–3398.PubMedGoogle Scholar
  84. 84.
    Al-Kobaisi, M. F., Rixon, F. J., McDougall, I., and Preston, V. G., 1991, The herpes simplex virus UL33 gene product is required for the assembly of full capsids, Virology 60:1018–1026.Google Scholar
  85. 85.
    McNabb, D. S., and Courtney, R. J., 1992, Identification and characterization of the herpes simplex virus type 1 virion protein encoded by the UL35 open reading frame, J. Virol. 66:2653–2663.PubMedGoogle Scholar
  86. 86.
    McNabb, D. S., and Courtney, R.J., 1992, Analysis of the UL36 open reading frame encoding the large tegument protein (ICP1/2) of herpes simples virus type 1, J. Virol 66:7581–7584.PubMedGoogle Scholar
  87. 87.
    Chang, J. E., and Roizman, B., 1993, The product of the UL31 gene of herpes simplex virus 1 is a nuclear phosphoprotein which partitions with the nuclear matrix, J. Virol. 67:6348–6356.PubMedGoogle Scholar
  88. 88.
    Berezney, R., 1991, The nuclear matrix: A heuristic model for investigating genomic organization and function in the cell nucleus, J. Cell Biochem. 47:109–123.PubMedCrossRefGoogle Scholar
  89. 89.
    Chatterjee, P. K., and Flint, S. J., 1986, Partition of E1A proteins between soluble and structural fractions of adenovirus-infected and-transformed cells, J. Virol. 60:1018–1026.PubMedGoogle Scholar
  90. 90.
    Schirmbeck, R., and Deppert, W., 1989, Nuclear subcompartmentalization of simian virus 40 large T antigen: Evidence for in vivo regulation of biochemical activities, J. Virol. 63:2308–2316.PubMedGoogle Scholar
  91. 91.
    Purves, F. C., Spector, D., and Roizman, B., 1992, UL34, the target of the herpes simplex virus US3 protein kinase, is a membrane protein which in its unphosphorylated state associates with novel phosphoproteins, J. Virol 66:4295–4303.PubMedGoogle Scholar
  92. 92.
    Tsai, L.-H., Harlow, E., and Meyerson, M., 1991, Isolation of the human cdk2 gene that encodes the cyclin A and adenovirus E1A-associated p33 kinase, Nature 353:174–177.PubMedCrossRefGoogle Scholar
  93. 93.
    Iwasaka, T., Smith, C., Aurelian, L., and Ts’o, P. O. P., 1985, The cervical tumor-associated antigen (ICP-10/AG-4) is encoded by the transforming region of the genome of herpes simplex virus type 2, Jpn.J. Cancer Res. 76:946–958.Google Scholar
  94. 94.
    Chung, T. D., Wymer, J. P., Kulka, M., Smith, C. C., and Aurelian, L., 1990, Myristylation and polylysine-mediated activation of the protein kinase domain of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10), Virology 179:168–178.PubMedCrossRefGoogle Scholar
  95. 95.
    Hanks, S. K., Quinn, A. M., and Hunter, T., 1988, The protein kinase family: Conserved features and deduced phylogeny of the catalytic domains, Science 241:42–51.PubMedCrossRefGoogle Scholar
  96. 96.
    Kamps, M. P., and Sefton, B. M., 1986, Neither arginine nor histidine can carry out the function of lysine-295 in the ATP-binding site of p60src, Mol. Cell. Biol. 6:751–757.PubMedGoogle Scholar
  97. 97.
    Brenner, S., 1987, Phosphotransferase sequence homology, Nature 329:21.PubMedCrossRefGoogle Scholar
  98. 98.
    Hunter, T., and Cooper, J. A., 1986, Viral oncogenes and tyrosine phosphorylation, in: The Enzymes: Control by Phosphorylation, 3rd ed., vol. 17, part A, (P. D. Boyer and E. G. Krebs, eds.), Academic Press, Orlando, pp. 191–246.CrossRefGoogle Scholar
  99. 99.
    Perlman, D., and Halverson, H. O., 1983, A putative signal peptide recognition site and sequence in eukaryotic and prokaryotic signal peptides, J. Mol. Biol. 167:391–409.PubMedCrossRefGoogle Scholar
  100. 100.
    Wymer, J. P., Chung, T. C., Chang, Y N., Hayward, G. S., and Aurelian, L., 1989, Identification of immediate-early-type cis-response elements in the promoter for the ribonucleotide reductase large subunit from herpes simplex virus type 2, J. Virol. 63:2773–2784.PubMedGoogle Scholar
  101. 101.
    Wymer, J. P., Aprhys, C. M. J., Chung, T. D., Feng, C.-P., Kulka, M., and Aurelian, L., 1992, Immediate early and functional AP-1 cis-response elements are involved in the transcriptional regulation of the large subunit of herpes simplex virus type 2 ribonucleotide reductase (ICP10), Virus Res. 23:253–270.PubMedCrossRefGoogle Scholar
  102. 102.
    Luo, J. H., and Aurelian, L., 1992, The transmembrane helical segment but not the invariant lysine is required for the kinase activity of the large subunit of herpes simplex virus type 2 ribonucleotide reductase, J. Biol. Chem. 267:9645–9653.PubMedGoogle Scholar
  103. 103.
    Luo, J. H., Smith, C. C., Kulka, M., and Aurelian, L., 1991, A truncated protein kinase domain of the large subunit of the herpes simplex type 2 ribonucleotide reductase (ICP10) expressed in Eschmchia coli, J. Biol Chem. 266:20976–20983.PubMedGoogle Scholar
  104. 104.
    Stock, J. B., Ninfa, A. J., and Stock, A. M., 1989, Protein phosphorylation and regulation of adaptive responses in bacteria, Microbiol. Rev. 53:450–490.PubMedGoogle Scholar
  105. 105.
    Conner, J., Cooper, J., Furlong, J., and Clements, J. B., 1992, An autophosphorylating but not transphosphorylating activity is associated with the unique N terminus of the herpes simplex virus type 1 ribonucleotide reductase large subunit, J. Virol 66:7611–7516.Google Scholar
  106. 106.
    Paradis, H., Gaudreau, P., Massie, B., Lamarche, N., Guilbault, C., Gravel, S., and Langeier, Y, 1991, Affinity purification of active subunit 1 of herpes simplex virus type 1 ribonucleotide reductase exhibiting a protein kinase function, J. Biol Chem. 266:9647–9651.PubMedGoogle Scholar
  107. 107.
    Chung, T. C., Luo, J. H., Wymer, J. P., Smith, C. C., and Aurelian, L., 1991, Leucine repeats in the large subunit of herpes simplex virus type 2 ribonucleotide reductase (RR; ICP10) are involved in RR activity and subunit complex formation, J. Gen. Virol 72:1139–1144.PubMedCrossRefGoogle Scholar
  108. 108.
    Ren, R. B., Mayer, B.J., Cicchetti, P., and Baltimore, D., 1993, Identification of a ten-amino acid proline-rich SH3 binding site, Science 259:1157–1161.PubMedCrossRefGoogle Scholar
  109. 109.
    Koch, C. A., Anderson, D., Moran, M. F., Ellis, C., and Pawson, T., 1991, SH2 and SH3 domains: Elements that control interactions of cytoplasmic signaling proteins, Science 252:668–674.PubMedCrossRefGoogle Scholar
  110. 110.
    Mayer, B. J., and Baltimore, D., 1993, Signaling through SH2 and SH3 domains, Trends Cell Biol. 3:8–13.PubMedCrossRefGoogle Scholar
  111. 111.
    Wang, L. H., Lin, B., Jong, S. M. J., Dixon, D., Ellis, L., Roth, R. A., and Rutter, W. J., 1987, Activation of transforming potential of the human insulin receptor gene, Proc. Natl. Acad. Sci. USA 84:5725–5729.PubMedCrossRefGoogle Scholar
  112. 112.
    Gherzi, R., Sesti, G., Andraghetti, G., DePirro, R., Lauro, R., Adezati, L., and Cordera, R., 1989, An extracellular domain of the insulin receptor ß-subunit with regulatory function on protein-tyrosine kinase, J. Biol. Chem. 264:8627–8635.PubMedGoogle Scholar
  113. 113.
    Yarden, Y., and Ullrich, A., 1988, Growth factor receptor tyrosine kinases, Annu. Rev. Biochem. 57:442–478.CrossRefGoogle Scholar
  114. 114.
    Yarden, Y, 1990, Receptor-like oncogenes: Functional analysis through novel experimental approaches, Mol. Immunol. 27:1319–1324.PubMedCrossRefGoogle Scholar
  115. 115.
    Kalderon, D., Roberts, B. L., Richardson, W. D., and Smith, A. E., 1984, A short amino acid sequence able to specify nuclear location, Cell 39:499–509.PubMedCrossRefGoogle Scholar
  116. 116.
    Fukui, Y., O’Brien, M. C., and Hanafusa, H., 1991, Deletions in the SH2 domain of p60V-src prevent association with the detergent insoluble cellular matrix, Mol. Cell. Biol. 11:1207–1213.PubMedGoogle Scholar
  117. 117.
    Rettenmier, C. W., Roussel, M. F., Quinn, C. O., Kitchingman, G. R., Look, A. T., and Sherr, C. J., 1985, Transmembrane orientation of glycoproteins encoded by the v-fms oncogene, Cell 40:971–981.PubMedCrossRefGoogle Scholar
  118. 118.
    Hunter, J. C. R., Smith, C. C., Bose, D., Kulke, M., Broderick, R., and Aurelian, L., 1995, Intracellular internalization and signaling pathways triggered by the large subunit of HSV-2 ribonucleotide reductase (ICP10), Virology 210:345–360.PubMedCrossRefGoogle Scholar
  119. 119.
    Matthews, L. S., and Vale, W. W., 1991, Expression cloning of an activin receptor, a predicted transmembrane serine kinase, Cell 65:973–982.CrossRefGoogle Scholar
  120. 120.
    Wrana, J. L., Attisano, L., Caracamo, J., Zentella, A., Doody, J., Laiho, M., Wang, X.-F., and Massague, J., 1992, TGFß signals through a heteromeric protein kinase receptor complex, Cell 71:1003–1014.PubMedCrossRefGoogle Scholar
  121. 121.
    Satoh, T., Endo, M., Nakafuku, M., Akiyama, T., Yamamoto, T., and Kaziro, Y, 1990, Accumulation of p21ras GTP in response to stimulation with epidermal growth factor and oncogene products with tyrosine kinase activity, Proc. Natl. Acad. Sci. USA 87:7926–7929.PubMedCrossRefGoogle Scholar
  122. 122.
    Satoh, T., Endo, M., Nakafuku, M., Nakamura, S., and Kaziro, Y, 1990, Platelet-derived growth factor stimulates formation of active p21ras GTP complex in Swiss mouse 3T3 cells, Proc. Natl. Acad. Sci. USA 87:5993–5997.PubMedCrossRefGoogle Scholar
  123. 123.
    Lowenstein, E. J., Daly, R. J., Batzer, A. G., Li, W., Margolis, B., Lammers, R., Ullrich, A., Scholnick, E., Bar-Sagi, D., and Schlesinger, J., 1992, The SH2 and SH3 domain containing protein Grb2 links receptor tyrosine kinases to ras signaling, Cell 70:431–442.PubMedCrossRefGoogle Scholar
  124. 124.
    Li, N., Batzer, A., Daly, R., Yajnik, V., Skolnik, E., Chardin, P., Bar-Sagi, D., Margolis, B., and Schlessinger, J., 1993, Guanine-nucleotide-releasing factor hSos1 binds to Grb2 and links receptor tyrosine kinases to Ras signalling, Nature 363:85–88.PubMedCrossRefGoogle Scholar
  125. 125.
    Chardin, P., Carnonis, J. H., Gale, N. W., VanAelst, L., Schlesinger, J., Willer, M. H., and Bar-Sagi, D., 1993, Human Sosl—aguanine nucleotide exchange factor for ras that binds to Grb2, Science 260:1338–1343.PubMedCrossRefGoogle Scholar
  126. 126.
    McCormick, F, 1989, Ras GTPase activating protein: Signal transmitter and signal terminator, Cell 56:5–8.PubMedCrossRefGoogle Scholar
  127. 127.
    Trahey, M., and McCormick, F, 1987, A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants, Science 238:542–545.PubMedCrossRefGoogle Scholar
  128. 128.
    Ellis, C., Moran, M., McCormick, F., and Pawson, T., 1990, Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases, Nature 343:377–381.PubMedCrossRefGoogle Scholar
  129. 129.
    Moran, M. F., Polakis, P., McCormick, F., Pawson, T., and Ellis, C., 1991, Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein, Mol. Cell. Biol. 11:1804–1812.PubMedGoogle Scholar
  130. 130.
    Kaplan, D. R., Morrison, D. K., Wong, G., McCormick, R., and Williams, L. T., 1990, PDGF ß-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex, Cell 61:125–133.PubMedCrossRefGoogle Scholar
  131. 131.
    Buday, L., and Downward, J., 1993, Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor, Cell 73:611–620.PubMedCrossRefGoogle Scholar
  132. 132.
    Selby, M. J., Barta, A., Baxter, J. D., Bell, G. L., and Eberhardt, N. L., 1984, Analysis of a major human chorionic somatomammotropin gene. Evidence for two functional promoter elements, J. Biol Chem. 259:13131–13138.PubMedGoogle Scholar
  133. 133.
    Jones, C., Ortiz, J., and Jariwalla, R. J., 1986, Localization and comparative nucleotide sequence analysis of the transforming domain in herpes simplex virus DNA containing repetitive genetic elements, Proc. Natl. Acad. Sci. USA 83:7855–7859.PubMedCrossRefGoogle Scholar
  134. 134.
    Jones, C., Zhu, F., and Dhanwada, K. R., 1993, Analysis of a herpes simplex virus 2 fragment from the open reading frame of the large subunit of ribonucleotide reductase with transcriptional regulatory activity, DNA Cell Biol. 12:127–137.PubMedCrossRefGoogle Scholar
  135. 135.
    Jones, C., 1989, The minimal transforming fragment of HSV-2 mtrIII can function as a complex promoter element, Virology 169:346–353.PubMedCrossRefGoogle Scholar
  136. 136.
    Lankinen, H., Telford, E., MacDonald, D., and Marsden, H., 1989, The unique N-terminal domain of the large subunit of herpes simplex virus ribonucleotide reductase is preferentially sensitive to proteolysis, J. Gen. Virol. 70:3159–3169.PubMedCrossRefGoogle Scholar
  137. 137.
    Rogers, S., Wells, R., and Rechsteiner, M., 1986, Amino acid sequences common to rapidly degraded proteins: The PEST hypothesis, Science 234:364–368.PubMedCrossRefGoogle Scholar
  138. 138.
    Galloway, D. A., Buonaguro, F. M., Brandt, C. R., and McDougall, J. K., 1985, Herpes simplex virus and cytomegalovirus: Unconventional DNA tumor viruses, in: DNA Tumor Viruses, Cancer Cell, Vol. 4 (M. Botcham, T. Grodzicker, and P. A. Sharp, eds.), Cold Spring Harbor Laboratory, New York, pp. 355–361.Google Scholar
  139. 139.
    McDougall, J. K., Beckmann, A. M., and Galloway, D. A., 1985, The enigma of viral nucleic acids in genital neoplasia, in: Viral Etiology of Cervical Cancer (R. Peto and H. zur Hausen, eds.), Cold Spring Harbor Laboratory, New York, pp. 199–209.Google Scholar
  140. 140.
    Ames, B. N., McCann, J., and Yamasaki, E., 1975, Methods for detecting carcinogens and mutagens with the salmonella/mammalian microsome mutagenicity test, Mutat. Res. 31:347–364.PubMedCrossRefGoogle Scholar
  141. 141.
    Schimke, R. T. (ed.), 1982, Gene Amplification, Cold Spring Harbor Laboratory, New York.Google Scholar
  142. 142.
    Lavi, S., 1981, Carcinogen-mediated amplification of viral DNA sequences in simian virus 40-transformed Chinese hamster embryo cells, Proc. Natl. Acad. Sci. USA 78:6144–6148.PubMedCrossRefGoogle Scholar
  143. 143.
    Varshavsky, A., 1981, On the possibility of metabolic control of replicon “misfiring”: Relationship to emergence of malignant phenotypes in mammalian cell lineages, Proc. Natl. Acad. Sci. USA 78:742–746.CrossRefGoogle Scholar
  144. 144.
    Schimke, R. T., Sherwood, S. W., Hill, A. B., and Johnston, R. N., 1986, Overreplication and recombination of DNA in higher eukaryotes: Potential consequences and biological implications, Proc. Natl. Acad. Sci. USA 83:2157–2161.PubMedCrossRefGoogle Scholar
  145. 145.
    Walker, A. I., Hunt, T., Jackson, R. J., and Anderson, C. W., 1985, Double stranded DNA induces the phosphorylation of several proteins including the 90,000 mol. wt. heat shock protein in animal cell extracts, EMBO J. 4:139–145.PubMedGoogle Scholar
  146. 146.
    Schuermann, M., Neuberg, M., Hunter, J. B., Jenuwein, T., Ryseck, R. P., and Muller, R., 1989, The leucine repeat motif in Fos protein mediates complex formation with Jun/AP-1 and is required for transformation, Cell 56:507–516.PubMedCrossRefGoogle Scholar
  147. 147.
    Jang, K. L., Pulverer, B., Woodgett, J. R., and Latchman, D. S., 1991, Activation of the cellular transcription factor AP-1 in herpes simplex virus infected cells is dependent on the viral immediate-early protein ICP0, Nucleic Acids Res. 19:4879–4883.PubMedCrossRefGoogle Scholar
  148. 148.
    Hsiao, W.-L. W., Galtoni-Celli, S., and Weinstein, I. B., 1985, Effect of 5-azacytidine on the progressive nature of cell transformation, Mol. Cell. Biol. 5:1800–1803.PubMedGoogle Scholar
  149. 149.
    Macnab, J. C. M., Adams, R. L. P., Rinaldi, A., Orr, A., and Clark, L., 1988, Hypomethylation of host cell DNA synthesized after infection or transformation of cells by herpes simplex virus, Mol. Cell. Biol. 8:1443–1448.PubMedGoogle Scholar
  150. 150.
    Wilson, S. M., and Kuff, E. L., 1972, A novel DNA polymerase activity found in association with intracisternal A-type particles, Proc. Natl. Acad. Sci. USA 69:1531–1536.PubMedCrossRefGoogle Scholar
  151. 151.
    Gomez-Marquez, J., Puga, A., and Notkins, A. L., 1985, Regions of the terminal repetitions of the herpes simplex virus type 1 genome, J. Biol. Chem. 260:3490–3495.PubMedGoogle Scholar
  152. 152.
    Jones, T. R., and Hyman, R. W., 1986, Sequences in the proximal IRL of herpes simplex virus DNA hybridise to human DNA, Virus Res. 4:369–375.PubMedCrossRefGoogle Scholar
  153. 153.
    Spector, D.J., Jones, T. R., Parks, C. L., Deckhut, A. M., and Hyman, R. W., 1987, Hybridisation between a repeated region of herpes simplex virus type 1 DNA containing the sequence [GGC]n and heterodisperse cellular DNA and RNA, Virus Res. 7:69–82.PubMedCrossRefGoogle Scholar
  154. 154.
    Jones, T. R., and Hyman, R. W., 1983, Specious hybridisation between herpes simplex virus DNA and human cellular DNA, Virology 131:555–560.PubMedCrossRefGoogle Scholar
  155. 155.
    Jones, T. R., Parks, C. L., Spector, D. J., and Human, R. W., 1985, Hybridisation of herpes simplex virus DNA and human ribosomal DNA and RNA, Virology 144:384–197.PubMedCrossRefGoogle Scholar
  156. 156.
    Parks, C. L. Jones, T. R., Gonzalez, I. L., Schmickel, R. D., Hyman, R. W., and Spector, DJ., 1986, A simple repetitive sequence common to herpes simplex virus type 1 and human ribosomal DNAs, Virology 154:381–388.PubMedCrossRefGoogle Scholar
  157. 157.
    Burns J. C., and Murray, B. K., 1981, Conversion of herpetic lesions to malignancy by ultraviolet exposure and promoter application, J. Gen. Virol. 55:305–313.PubMedCrossRefGoogle Scholar
  158. 158.
    Min, B. M., Kim, K., Cherrick, H. M., and Park, N. H., 1991, Three cell lines from hamster buccal pouch tumors induced by topical 7,12-dimethylbenz(a) anthracene, alone or in conjunction with herpes simplex virus inoculation, In Vitro 27A:128–136.Google Scholar
  159. 159.
    Park, K., Cherrick, H. M., Min, B. M., and Park, N. H., 1990, Active HSV-1 immunization prevents the cocarcinogenic activity of HSV-1 in the oral cavity of hamsters, Oral Surg. Oral Med. Oral Pathol. 70:186–191.PubMedCrossRefGoogle Scholar
  160. 160.
    Park, N. H., Li, S. L., Xie J. F., and Cherrick, H. M., 1992, In vitro and animal studies of the role or viruses in oral carcinogenesis, Oral Oncol. Eur. J. Cancer 28B:145–152.CrossRefGoogle Scholar
  161. 161.
    Wentz, W. B., Reagan J. W., Heggie, A. D., Fu, Y.-S., and Anthony, D. D., 1981, Induction of uterine cancer with inactivated herpes simplex virus types 1 and 2, Cancer 48:1783–1790.PubMedCrossRefGoogle Scholar
  162. 162.
    Wentz, W. B., Heggie, A. D., Anthony, D. D., and Reagan, J. W., 1983, Effect of prior immunisation on induction of cervical cancer in mice by herpes simplex virus type 2, Science 222:1128–1129.PubMedCrossRefGoogle Scholar
  163. 163.
    Anthony, D. D., Wentz, W. B., Reagan, J. W., and Meggie, A. D., 1989, Induction of cervical neoplasia in the mouse by herpes simplex virus type 2 DNA, Proc. Natl. Acad. Sci. USA 86:4520–4524.PubMedCrossRefGoogle Scholar
  164. 164.
    Chen, M., Dong, C., Liu, Z., Skinner, G. B. R., and Hartley, C. E., 1986, Efficacy of vaccination with Skinner vaccine towards the prevention of herpes simplex virus induced cervical carcinomas in an experimental mouse model, Vaccine 4:249–252.PubMedCrossRefGoogle Scholar
  165. 165.
    Meignier, B., Norrild, B., Thuning, C., Warren, J., Frenkel, N., Nahmias, A. J., Rapp, F., and Roizman, B., 1986, Failure to induce cervical cancer in mice by long term frequency vaginal exposure to live or inactivated herpes simplex viruses, Int. J. Cancer 38:387–394.PubMedCrossRefGoogle Scholar
  166. 166.
    Aurelian, L., 1993, Genital cancer and Langerhans cells, In Vivo 7:297–304.PubMedGoogle Scholar
  167. 167.
    Hildesheim, A., Mann, V., Brinton, L., Szklo, M., Reeves, W. C., and Rawls, W. E., 1991, Herpes simplex virus type 2: A possible interaction with human papillomavirus types 16/18 in the development of invasive cervical cancer, Int. J. Cancer 49:335–340.PubMedCrossRefGoogle Scholar
  168. 168.
    Flanders, R. T., Kucera, L. S., Raben, M., and Ricardo, M. J. Jr., 1985, Immunologic characterization of herpes simplex virus type 2 antigens ICP10 and ICSP11/12, Virus Res. 2:245–260.PubMedCrossRefGoogle Scholar
  169. 169.
    Te Velde E. R., and Aurelian, L., 1987, Antibodies to the herpes simplex virus type 2 induced tumor-associated antigen AG-4 as markers of recurrence in cervical cancer, Tumour Biol. 8:26–33.CrossRefGoogle Scholar
  170. 170.
    Sainz de la Cuesta, R., Reed, T. P., Brothman, J. G., and Dubin, N. H., 1983, LA-1 oncogene: A possible new prognostic index for evaluating cervical squamous intraepithelial lesions, J. Reprod. Med. 38:173–178.Google Scholar
  171. 171.
    Aurelian, L., 1986, Seroepidemiologic association of HSV-2 with cervical cancer: Transforming viral genes, in: Herpes and Papillomaviruses (G. De Palo, F. Rilke, and M. Zur Heusen, eds.), New York, Raven Press, pp. 63–82.Google Scholar
  172. 172.
    Heilbronn, R., Schlehofer, J. R., Yalkinoglu, A. O., and zur Hausen, H., 1985, Selective DNA amplification induced by carcinogens (initiators): Evidence for a role of proteases and DNA polymerase alpha, Int. J. Cancer 36:85–91.PubMedCrossRefGoogle Scholar
  173. 173.
    Puga, A., Cantin, E. M., and Notkins, A. L., Homology between murine and human cellular DNA sequences and the terminal repetition of the S component of herpes simplex virus type I DNA, Cell 31:81–87.Google Scholar
  174. 174.
    Macnab, Y. C. M., 1987, Herpes simplex virus and human cytomegalovirus: Their role in morphological transformation and genital cancers, J. Gen. Virol. 68:2525–2550.PubMedCrossRefGoogle Scholar
  175. 175.
    Cooper, J., Conner, J. and Clemants, J. B., 1995, Characterization of the morel protein kinase present in the RI subunit of herpes simplex virus ribonucleotide reductase, J. Virol. 69:4979–4985.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Laure Aurelian
    • 1
    • 2
  1. 1.Virology/Immunology Laboratories, Department of Pharmacology and Experimental TherapeuticsUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Departments of Biochemistry and Comparative MedicineThe Johns Hopkins Medical InstitutionsBaltimoreUSA

Personalised recommendations