Quantitative Methods in Classical Perturbation Theory

  • Antonio Giorgilli
Part of the NATO ASI Series book series (NSSB, volume 336)

Abstract

At the beginning of the second volume of his Méthodes nouvelles de la Mécanique Céleste Poincaré devoted the chapter VIII to the problem of the reliability of the formal expansions of perturbation theory. He proved that the series commonly used in Celestial mechanics are typically non convergent, although their usefulness is generally evident. In particular, he pointed out that these series could have the same character of the Stirling’s series. Recent work in perturbation theory has enlighten this conjecture of Poincaré, bringing into evidence that the series of perturbation theory, although non convergent in general, furnish nevertheless valuable approximations to the true orbits for a very large time, which in some practical cases could be comparable with the age of the universe.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Deprit, A. (1969): “Canonical transformations depending on a small parameter”, Cd. Mech. 1, 12–30.MathSciNetADSMATHCrossRefGoogle Scholar
  2. 2.
    Gröbner, W. (1960): Die Lie—Reihen und Ihre Anwendungen, Springer Verlag, Berlin; it. transl.: Le serie di Lie e le loro applicazioni, Cremonese, Roma (1973).Google Scholar
  3. 3.
    Giorgilli, A. and Galgani, L. (1978): Formal integrals for an autonomous Hamiltonian system near an equilibrium point, Cel. Mech. 17, 267–180.MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    Giorgilli, A. and Galgani, L. (1985): “Rigorous estimates for the series expansions of Hamiltonian perturbation theory”, Cel. Mech. 37, 95–112.MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    Kolmogorov, A.N. (1954): On the preservation of conditionally periodic motions, Doklady Akademia Nauk SSSR, 96, 527–530.MathSciNetGoogle Scholar
  6. 6.
    Hori, G. (1966): “Theory of general perturbations with unspecified canonical variables”, Publ. Astron. Soc. Japan, 18, 287–296.ADSGoogle Scholar
  7. 7.
    Littlewood, J.E. (1959): “On the equilateral configuration in the restricted problem of three bodies”, Proc. London Math. Soc. 9, 343–372;MathSciNetCrossRefGoogle Scholar
  8. 8.
    Littlewood, J. E. (1959): “The Lagrange configuration in celestial mechanics”, Proc. London Math. Soc. 9, 525–543.MATHCrossRefGoogle Scholar
  9. 9.
    Moser, J., (1955): “Stabilitätsverhalten kanonisher differentialgleichungssysteme”, Nachr. Akad. Wiss. Göttingen, Math. Phys. K1 IIa, nr.6, 87–120.Google Scholar
  10. 10.
    Nekhoroshev, N., N., (1977): “Exponential estimates of the stability time of near—integrable Hamiltonian systems.”, Russ. Math. Surveys, 32, 1–65.ADSMATHCrossRefGoogle Scholar
  11. 11.
    Nekhoroshev, N., N., (1979): “Exponential estimates of the stability time of near—integrable Hamiltonian systems, 2.”, Trudy Sem. Petrovs., 5, 5–50.MathSciNetMATHGoogle Scholar
  12. 12.
    Poincaré, H. (1892): Le méthodes nouvelles de la méanique célèste, Gauthier—Villard, Paris.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Antonio Giorgilli
    • 1
  1. 1.Dipartimento di Matematica dell’Università di MilanoMilanoItaly

Personalised recommendations