Chromatographic Techniques for the Characterization of Proteins

  • Joost J. M. Holthuis
  • Reinoud J. Driebergen
Part of the Pharmaceutical Biotechnology book series (PBIO, volume 7)


The improvements in the Chromatographic analysis of proteins and peptides during the last decade contributed significantly to the development of (recombi-nant) pharmaceutical proteins. The availability of these analytical methods for the characterization and purity determination of proteins enabled the improvement of the overall manufacturing process of pharmaceutical proteins.


Affinity Chromatography Chromatographic Technique Peptide Mapping Hydrophobic Interaction Chromatography Immobilize Metal Affinity Chromatography 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackland, C. E., Berndt, W. G., Frezza, J. E., Landgraf, B. E., Pritchard, K. W., and Ciardelli, T. L., 1991, Monitoring of protein conformation by high-performance size-exclusion liquid chromatography and scanning diode array second-derivative UV absorption spectroscopy, J. Chromatogr. 540:187–198.PubMedCrossRefGoogle Scholar
  2. Afeyan, N. B., Gordon, N. F., Mazsaroff, I., Varady, L., Fulton, S. P., Yang, Y. B., and Regnier, F. E., 1990, Flow-through particles for the high-performance liquid Chromatographic separation of biomolecules: Perfusion chromatography, J. Chromatogr. 519: 1–29.PubMedCrossRefGoogle Scholar
  3. Afeyan, N. B., Fulton, S. P., and Regnier, F. E., 1991, Perfusion chromatography packing materials for proteins and peptides, J. Chromatogr. 544:267–279.CrossRefGoogle Scholar
  4. Ahmed, F., and Modrek, B., 1992, Biosep-SEC-S high performance size-exclusion Chromatographic columns for proteins and peptides, J. Chromatogr. 599:25–33.CrossRefGoogle Scholar
  5. Alpert, A. J., 1990, Hydrophylic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds, J. Chromatogr. 499:177–196.PubMedCrossRefGoogle Scholar
  6. Andersson, T., Carlsson, M., Hagel, L., Pernemalm, P., and Janson, J., 1985, Agarose-based media for high-resolution gel filtration of biopolymers, J. Chromatogr. 326:33–44.CrossRefGoogle Scholar
  7. Arakawa, T., and Owers Narhi, L., 1991, Review: Solvent modulation in hydrophobic interaction chromatography, Biotechnol. Appl. Biochem. 13:151–172.PubMedGoogle Scholar
  8. Bacolod, M. D., and El Rassi, Z., 1990, High-performance metal chelate interaction chromatography of proteins with silica-bound ethylenediamine-N,N′-diacetic acid, J. Chromatogr. 512:237–247.CrossRefGoogle Scholar
  9. Bell, D. J., Brightwell, M. D., Haran, M., Neville, W. A., and West, A., 1991, Routine liquid chromatography/fast atom bombardment mass spectrometry of peptides and enzymatically digested proteins, Org. Mass Spectrom. 26:454–457.CrossRefGoogle Scholar
  10. Blackstock, W. P., Dennis, R. J., Lane, S. J., Sparks, J. I., and Weir, M. P., 1988, The analysis of recombinant interleukin-2 by thermospray liquid chromatography-mass spectrometry, Anal. Biochem. 175:319–326.PubMedCrossRefGoogle Scholar
  11. Boutin, J. A., Ernould, A.-P., Ferry, G., Genton, A., Alpert, A. J., 1992, Use of hydrophylic interaction chromatography for the study of tyrosine protein kinase specificity, J. Chromatogr. 583:137–143.PubMedGoogle Scholar
  12. Brems, D. N., Plaisted, S. M., Havel, H. A., and Tomich, C.-S., 1988, Stabilization of associated folding intermediate of bovine growth hormone by site-directed mutagenesis, Proc. Natl. Acad. Sci. USA 85:3367–3371.PubMedCrossRefGoogle Scholar
  13. Browning, J. L., Mattaliano, R. J., Pingchang Chow, E., Shu-Mei Liang, Allet, B., Rosa, J., and Smart, J. E., 1986, Anal. Biochem. 155:123–128.PubMedCrossRefGoogle Scholar
  14. Buckley, J. J., and Wetlaufer, D. B., 1990, Surfactant-mediated hydrophobic interaction chromatography of proteins: Gradient elution, J. Chromatogr. 518:99–110.PubMedCrossRefGoogle Scholar
  15. Burton, W. G., Nugent, K. D., Slattery, T. K., Summers, B. R., and Snyder, L. R., 1988, Separation of proteins by reversed phase high-performance liquid chromatography. I. Optimizing the column, J. Chromatogr. 443:363–379.PubMedCrossRefGoogle Scholar
  16. Cacia, J., Quan, C. P., Vasser, M., Sliwkowski, M. B., and Frenz, J., 1993, Protein sorting by high-performance liquid chromatography I. Biomimetic interaction chromatography of recombinant human deoxyribonuclease I on polyionic stationary phases, J. Chromatogr. 634:229–239.PubMedCrossRefGoogle Scholar
  17. Cassidy, S. A., Janis, L. J., and Regnier, F. E., 1992, Kinetic Chromatographic sequential addition immunoassay using protein A affinity chromatography, Anal. Chem. 64: 1973–1977.PubMedCrossRefGoogle Scholar
  18. Chaiken, I. M., 1990, High performance affinity chromatography: Isolation and analysis of biological macromolecules, in: High Performance Liquid Chromatography in Biotechnology (W. S. Hancock, ed.), John Wiley, New York, pp. 289–300.Google Scholar
  19. Chang, J. F., 1984, Effect of surfactants on the separation of proteins by reversed-phase high-performance liquid chromatography. 1. Non-ionic surfactants (Tween), J. Chromatogr. 517:157–163.Google Scholar
  20. Chloupek, R. C., Harris, R. J., Leonard, C. K., Keck, R. G., Keyt, B. A., Spellman, M. W., Jones, A. J. S., and Hancock, W. S., 1989, Study of the primary structure of recombinant tissue plasminogen activator by reversed-phase high-performance liquid Chromatographie tryptic mapping, J. Chromatogr. 463:375–396.PubMedCrossRefGoogle Scholar
  21. Christensen, T., Hansen, J. J., Sørensen, H. H., and Thomsen, J., 1990, RP-HPLC of biosynthetic and hypophyseal human growth hormone, in: High Performance Liquid Chromatography in Biotechnology (W. S. Hancock, ed.), John Wiley, New York, pp. 191–204.Google Scholar
  22. Clogston, C. L., Hsu, Y.-R., Boone, T. C., and Lu, H. S., 1992, Detection and quantitation of recombinant granulocyte colony-stimulating factor charge isoforms: Comparitive analysis by cationic-exchange chromatography, isoelectric focusing gel electrophoresis, and peptide mapping, Anal. Biochem. 202:375–383.PubMedCrossRefGoogle Scholar
  23. Cohen, S. A., Schellenberg, K., Benedek, K., Karger, B. L., Greco, B., and Hearn, M. T. W, 1984, Mobile-phase and temperature effects in the reversed phase Chromatographic separation of proteins, Anal. Biochem. 149:223–235.CrossRefGoogle Scholar
  24. Cohen, S. A., Benedek, K., Tapuhi, Y., Ford, J. C., and Karger, B. L., 1985, Conformational effects in the reversed-phase liquid chromatography of ribonuclease A, Anal. Biochem. 144:275–284.PubMedCrossRefGoogle Scholar
  25. Covey, T. R., Huang, E. C., and Henion, J. D., 1991, Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions, Anal. Chem. 63:1193–1200.PubMedCrossRefGoogle Scholar
  26. Dollinger, G., Cunico, B., Kunitani, M., Johnson, D., and Jones, R., 1992, Practical on-line determination of biopolymer molecular weights by high-performance liquid chromatography with classical light-scattering detection, J. Chromatogr. 592:215–228.CrossRefGoogle Scholar
  27. Dou, L., Holmberg, A., and Krull, I. S., 1991, Electrochemical detection of proteins in high-performance liquid chromatography using on-line, postcolumn photolysis, Anal. Biochem. 197:377–383.PubMedCrossRefGoogle Scholar
  28. Downham, M., Busby, S., Jefferis, R., and Lyddiatt, A., 1992, Immunoaffinity chromatography in biorecovery: An application of recombinant DNA technology to generic adsorption processes, J. Chromatogr. 584:59–67.PubMedGoogle Scholar
  29. Drake, A. F., Fung, M. A., and Simpson, C. F., 1989, Protein conformation changes as the result of binding to reversed-phase chromatography column material, J. Chromatogr. 476:159–163.PubMedCrossRefGoogle Scholar
  30. Dubin, A., Potempa, J., and Travis, J., 1990, Isolation of nine human plasma proteinase inhibitors by sequential affinity chromatography, Prep. Biochem. 20:63–74.PubMedCrossRefGoogle Scholar
  31. Dubin, P. L., and Principi, J. M., 1989, Optimization of size-exclusion separation of proteins on a Superose column, J. Chromatogr. 479:159–164.PubMedCrossRefGoogle Scholar
  32. Evans, D. B., Vosters, A. F., Carter, J. B., and Sharma, S. K., 1992, Immunodetection of recombinant proteins based on antibodies directed against a metal binding peptide engineered for purification by immobilized metal affinity chromatography, J. Immunol. Methods 156:231–238.PubMedCrossRefGoogle Scholar
  33. Fang, F. W., Aguilar, M. I., and Hearn, M. T. W., 1992, High-performance liquid chromatography of amino acids, peptides and proteins. CXX. Evaluation of bandwidth behaviour of proteins chromatographed on tentacle-type anion exchangers, J. Chromatogr. 599:163–170.CrossRefGoogle Scholar
  34. Fausnaugh, J. L., Kennedy, L. A., and Regnier, F. E., 1984, Comparison of hydrophobicinteraction and reversed-phase chromatography of proteins, J. Chromatogr. 317: 464–472.Google Scholar
  35. Felix, A. M., Heimer, E. P., Lambros, T. J., Swistok, J., Tarnowski, S. J., and Wang, C.-T., 1985, Analysis of different forms of recombinant human leukocyte interferons and synthetic fragments by high-performance liquid chromatography, J. Chromatogr. 327: 359–368.PubMedCrossRefGoogle Scholar
  36. Fleminger, G., Neufeld, T., Star-Weinstock, M., Litvak, M., and Solomon, B., 1992, Calcium-modulated conformational affinity chromatography. Application to the purification of calmodulin and S100 proteins, J. Chromatogr. 597:263–270.PubMedCrossRefGoogle Scholar
  37. Flurer, C. L., and Novotny, M., 1993, Dual microcolumn immunoaffinity liquid chromatography: An analytical application to human plasma proteins, Anal. Chem. 65: 817–821.PubMedCrossRefGoogle Scholar
  38. Formosa, T., Barry, J., Alberts, B. M., and Greenblatt, J., 1991, Using protein affinity chromatography to probe structure of protein machines, Methods Enzymol. 208: 24–45.PubMedCrossRefGoogle Scholar
  39. Frelinger, A. L., and Zull, J. E., 1984, Oxidized forms of parathyroid hormone with biological activity, J. Biol. Chem. 259:5507–5513.PubMedGoogle Scholar
  40. Frenz, J., Wu, S.-L., and Hancock, W. S., 1989, Characterization of human growth hormone by capillary electrophoresis, J. Chromatogr. 480:379–391.PubMedCrossRefGoogle Scholar
  41. Garnick, R. L., Solli, N. J., and Papa, P. A., 1988, The role of quality control in biotechnology: An analytical perspective, Anal. Chem. 60:2546–2557.PubMedCrossRefGoogle Scholar
  42. Geigert, J., 1989, Overview of the stability and handling of recombinant protein drugs, J. Parenter. Sci. Technol. 43:220–224.PubMedGoogle Scholar
  43. Giuliano, K. A., 1992, Chromatography of proteins on columns of polyvinylpolypyrrolidone using adsorbed textile dyes as affinity ligands, Anal. Biochem. 200:370–375.PubMedCrossRefGoogle Scholar
  44. Gooding, D. L., Schmuck, M. N., and Gooding, K. M., 1984, Analysis of proteins with new, mildly hydrophobic high-performance liquid chromatography packing materials, J. Chromatogr. 296:107–114.CrossRefGoogle Scholar
  45. Hage, D. S., and Walters, R. R., 1987, Dual-column determination of albumin and immunoglobulin G in serum by high-performance affinity chromatography, J. Chromatogr. 386:31–49.Google Scholar
  46. Hanson, M., Unger, K. K., Mant, C. T., and Hodges, R. S., 1992, Polymer-coated reversedphase packings with controlled hydrophobic properties. I. Effect on the selectivity of protein separations, J. Chromatogr. 599:65–75.CrossRefGoogle Scholar
  47. Hayashi, T., Sakamoto, S., Fuwa, T., Monta, I., and Yoshida, H., 1987, Determination of human epidermal growth factors in cultured media of E. coli by high performance liquid chromatography, Anal. Sci. 3:445–448.CrossRefGoogle Scholar
  48. Hayashi, Y., Sakamoto, S., Fuwa, T., Wada, I., and Yoshida, H., 1988, Determination of epidermal growth factors in human urine by high performance liquid chromatography using anti-hEGF antibody precolumn, Anal. Sci. 4:313–316.CrossRefGoogle Scholar
  49. Hearn, M. T. W., 1991, Characterisation of the physicochemical relationships of displacer ions in the high performance ion exchange chromatography of proteins, Anal. Sci. 7:1519–1523.CrossRefGoogle Scholar
  50. Hearn, M. T. W., Aguilar, M. I., Nguyen, T., and Fridman, M., 1988, High-performance liquid chromatography of amino acids, peptides and proteins LXXXIV. Application of derivative spectroscopy to the study of column residency effects in the reversed-phase and size-exclusion liquid Chromatographie separation of proteins, J. Chromatogr. 435:271–284.PubMedCrossRefGoogle Scholar
  51. Hemling, M. E., Roberts, G. D., Johnson, W., and Carr, S. A., 1990, Analysis of proteins and glycoproteins at the picomole level by on-line coupling of microbore high-performance liquid chromatography with flow fast atom bombardment and electrospray mass spectrometry: A comparative evaluation, Biomed. Environ. Mass Spectrom. 19: 677–691.PubMedCrossRefGoogle Scholar
  52. Hjerten, S., Zelikman, L, Lindeberg, J., Liao, J.-L, Eriksson, K.-O., and Mohammad. J., 1989, High-performance adsorption chromatography of proteins on deformed non-porous agarose beads coated with insoluble metal compounds, J. Chromatogr. 481: 175–186.CrossRefGoogle Scholar
  53. Hochuli, E., Dobeli, H., and Schacher, A., 1987, New metal chelate adsorbent selective for proteins and peptides containing neighbouring histidine residues, J. Chromatogr. 411:177–184.PubMedCrossRefGoogle Scholar
  54. Iadarola, P., Zapponi, M. C., Minchiotti, L., Meloni, M. L., Galliano, M., and Ferri, G., 1990, Separation of fragments from human serum albumin and its charged variants by reversed-phase and cation-exchange high-performance liquid chromatography, J. Chromatogr 512:165–176.PubMedCrossRefGoogle Scholar
  55. Jacquot-Dourges, M. A., Zhou, F. L., Muller, D., and Jozefonvicz, J., 1991, Affinity chromatography of fibroblast growth factors on coated silica supports grafted with heparin, J. Chromatogr 539:417–424.PubMedCrossRefGoogle Scholar
  56. Josic, D., Hofmann, W., Habermann, R., and Reutter, W., 1988, High-performance concanavalin a affinity chromatography of liver and hepatoma membrane proteins, J. Chromatogr 444:29–39.PubMedCrossRefGoogle Scholar
  57. Kalghatgi, K., and Horváth, C., 1988, Rapid peptide mapping by high-performance liquid chromatography, J. Chromatogr 443:343–354.PubMedCrossRefGoogle Scholar
  58. Karger, B. L., and Blanco, R., 1989, The effect of on-column structural changes of proteins on their HPLC behaviour, Talanta 36:243–248.PubMedCrossRefGoogle Scholar
  59. Kassel, D. B., Musselman, B. D., and Smith, J. A., 1991, Primary structure determination of peptides and enzymatically digested proteins using capillary liquid chromatography/ mass spectrometry and rapid linked-scan techniques, Anal. Chem. 63:1091–1097.PubMedCrossRefGoogle Scholar
  60. Kato, Y., Nakamura, K., and Hashimoto, T., 1983, New ion-exchanger for the separation of proteins and nucleic acids, J. Chromatogr 266:385–394.PubMedCrossRefGoogle Scholar
  61. Kato, Y., Kitamura, T., Nakamura, K., Mitsui, A., Yamasaki, Y., and Hashimoto, T., 1987, High-performance liquid chromatography of membrane proteins, J. Chromatogr 391: 395–407.PubMedCrossRefGoogle Scholar
  62. Kato, Y., Nakatani, S., Kitamura, T., Yamasaki, Y., and Hashimoto, T., 1990, Reversed-phase high-performance liquid chromatography of proteins and peptides on a pellicular support based on hydrophillic resin, J. Chromatogr 502:416–422.PubMedCrossRefGoogle Scholar
  63. Kato, A., Kameyama, K., and Takagi, T., 1992, Molecular weight determination and compositional analysis of dextran-protein conjugates using low-angle laser light scattering technique combined with high-performance gel chromatography, Biochim. Biophys. Acta 1159:22–28.PubMedCrossRefGoogle Scholar
  64. Katzenstein, G. E., Vrona, S. A., Wechsler, R. J., Steadman, B. L., Lewis, R. V., and Middaugh, C. R., 1986, Role of conformational changes in the elution of proteins from reversed-phase HPLC columns, Proc. Natl Sci. USA 83:4268–4272.CrossRefGoogle Scholar
  65. Kennedy, J. F., Rivera, Z. S., and White, C. A., 1989, The use of HPLC in biotechnology, J. Biotechnol. 9:83–106.CrossRefGoogle Scholar
  66. Kennedy, R. T., and Jorgenson, J. W., 1990, Efficiency of packed microcolumns compared with large-bore packed columns in size-exclusion chromatography, J. Microcol. Sep. 2:120–126.CrossRefGoogle Scholar
  67. Konishi, T., and Kamada, M., 1990, Evaluation of ammonium acetate as a volatile buffer for high-performance hydrophobic-interaction chromatography, J. Chromatogr 515: 279–283.CrossRefGoogle Scholar
  68. Kumagaye, K. Y., Takai, M., Chino, N., Kimura, T., and Sakakibara, S., 1985, Comparison of reversed-phase and cation-exchange high-performance liquid chromatography for separating closely related peptides: Separation of Asp76-human parathyroid hormone(l-84) from Asn76-human parathyroid hormone(l-84), J. Chromatogr. 327: 327–332.PubMedCrossRefGoogle Scholar
  69. Kunitani, M., and Kresin, L., 1993, High-performance liquid Chromatographic analysis of carbohydrate mass composition in glycoproteins, J. Chromatogr. 632:19–28.CrossRefGoogle Scholar
  70. Kunitani, M. L, Hirtzer, P., Johnson, D., Halenbeck, R., Boosman, A., and Koths, K., 1986, Reversed-phase chromatography of interleukin-2 muteins, J. Chromatogr. 359: 391–402.PubMedCrossRefGoogle Scholar
  71. Kunitani, M. G., Cunico, R. L., and Staats, S. J., 1988, Reversible subunit dissociation of tumour necrosis factor during hydrophobic interaction chromatography, J. Chromatogr. 443:205–220.PubMedCrossRefGoogle Scholar
  72. Kunitani, M., Dollinger, G., Johnson, D., and Kresin, L., 1991, On-line characterization of polyethylene glycol-modified proteins, J. Chromatogr. 588:125–137.CrossRefGoogle Scholar
  73. Kurosu, Y., Sasaki, T., Takakuwa, T., Sakayanagi, N., Hibi, K., and Senda, M., 1990, Analysis of proteins by high-performance liquid chromatography with circular dichroism spectrophotometric detection, J. Chromatogr. 515:407–414.CrossRefGoogle Scholar
  74. Lahm, H.-W., and Stein, S., 1985, Characterization of recombinant human interleukin-2 with micromethods, J. Chromatogr. 326:357–361.PubMedCrossRefGoogle Scholar
  75. Lau, S. Y. M., Taneja, A. K., and Hodges, R. S., 1984, Effects of high-performance liquid Chromatographic solvents and hydrophobic matrices on the secondary and quaternary structure of a model protein. Reversed-phase and size exclusion high-performance liquid chromatography, J. Chromatogr. 317:129–140.CrossRefGoogle Scholar
  76. Liapis, A. I., and McCoy, M. A., 1992, Theory of perfusion chromatography, J. Chromatogr. 599:87–104.CrossRefGoogle Scholar
  77. Lin, S., and Karger, B., 1990, Reversed-phase Chromatographie behaviour of proteins in different unfolded states, J. Chromatogr. 499:89–102.PubMedCrossRefGoogle Scholar
  78. Linde, S., and Welinder, B. S., 1991a, Reversed-phase chromatography of insulin and iodinated insulin, in: High-Performance Liquid Chromatography of Peptides and Proteins (C. T. Mant and R. S. Hodges, eds.), CRC Press, Boca Raton, FL, pp. 351–360.Google Scholar
  79. Linde, S., and Welinder, B. S., 1991b, Silica versus polymer-based stationary phases for reversed-phase high-performance liquid Chromatographie analyses of rat insulin biosynthesis. A comparison of resolution and recovery, J. Chromatogr. 548:195–206.PubMedCrossRefGoogle Scholar
  80. Ling, V., Guzzetta, A. W., Canova-Davis, E., Stults, J. T., Hancock, W. S., Covey, T. R., and Shushan, B. I., 1991, Characterization of the tryptic map of recombinant DNA derived tissue plasminogen activator by high-performance liquid chromatography-electrospray ionization mass spectrometry, Anal. Chem. 63:2909–2915.PubMedCrossRefGoogle Scholar
  81. Loetscher, P., Mottlau, L., and Hochuli, E., 1992, Immobilization of monoclonal antibodies for affinity chromatography using a chelating peptide, J. Chromatogr. 595:113–119.PubMedCrossRefGoogle Scholar
  82. Lu, X. M., Benedek, K., and Karger, B. L., 1986, Conformational effects in the high-performance liquid chromatography of proteins. Further studies of the reversed-phase Chromatographie behaviour of ribonuclease A, J. Chromatogr. 359:19–29.PubMedCrossRefGoogle Scholar
  83. Maa, Y.-F., and Horváth, C., 1988, Rapid analysis of proteins and peptides by reversed-phase chromatography with polymeric micropellicular sorbents, J. Chromatogr. 445: 71–86.PubMedCrossRefGoogle Scholar
  84. Malmquist, G., and Lundell, N., 1992, Characterization of the influence of displacing salts on retention in gradient elution ion-exchange chromatography of proteins and peptides, J. Chromatogr. 627:107–124.PubMedCrossRefGoogle Scholar
  85. Mant, C. T., and Hodges, R. S. (eds.), 1991, High-Performance Liquid Chromatography of Peptides and Proteins, CRC Press, Boca Raton, FL.Google Scholar
  86. Mant, C. T., Zhou, N. E., and Hodges, R. S., 1989, Correlation of protein retention times in reversed-phase chromatography with polypeptide chain length and hydrophobicity, J. Chromatogr. 476:363–375.PubMedCrossRefGoogle Scholar
  87. McLeod, A., and Wood, S. P., 1984, High-performance liquid chromatography of insulin, J. Chromatogr. 285:319–331.PubMedCrossRefGoogle Scholar
  88. Mhatre, R. M., and Krull, I. S., 1992, Interfacing gradient elution ion-exchange chromatography and low-angle laser light-scattering photometry for analysis of proteins, J. Chromatogr. 591:139–148.PubMedCrossRefGoogle Scholar
  89. Miles, J., and Formosa, T., 1992, Protein affinity chromatography with purified yeast DNA polymerase a detects proteins that bind to DNA polymerase, Proc. Natl. Acad. Sci. USA 89: 1276–1280.PubMedCrossRefGoogle Scholar
  90. Müller, W., 1990, New ion exchangers for the chromatography of biopolymers, J. Chromatogr. 510:133–140.CrossRefGoogle Scholar
  91. Muszynska, G., Dobrowolska, G., Medin, A., Ekman, P., and Porath, J. O., 1992, Model studies on iron(III) ion affinity chromatography, J. Chromatogr. 604:19–28.PubMedCrossRefGoogle Scholar
  92. Nakamura, H., Konishi, T., and Kamada, M., 1990, Use of volatile buffers in high performance hydrophobic interaction chromatography of proteins, Anal. Sci. 6:137–138.CrossRefGoogle Scholar
  93. Nakazawa, H., 1988, Rapid characterization of natural and biotechnologically synthesized human growth hormones by fast atom bombardment mass spectrometry and high-performance liquid chromatography, Chem. Pharm. Bull. 36:988–993.PubMedCrossRefGoogle Scholar
  94. Nau, D. R., 1989, Chromatographie methods for antibody purification and analysis, Bio-Chromatography 4:4–18.Google Scholar
  95. Nelson, N. F., and Kitagawa, N., 1990, Biomolecule separations with two new HPLC ionexchange columns, J. Liq. Chromatogr. 13:4037–4050.CrossRefGoogle Scholar
  96. Nugent, K. D., Burton, W. G., Slattery, T. K., Johnson, B. F., and Snyder, L. R., 1988, Separation of proteins by reversed-phase high-performance liquid chromatography. II. Optimizing sample pretreatment and mobile phase conditions, J. Chromatogr. 443: 381–397.PubMedCrossRefGoogle Scholar
  97. Ohgami, Y., Nagase, M., Nabeshima, S., Fukui, M., and Nakazawa, H., 1989, Characterization of recombinant DNA-derived human granulocyte macrophage colony stimulating factor by fast atom bombartment mass spectrometry, J. Biotechnol. 12:219–230.CrossRefGoogle Scholar
  98. Ohlson, S., Hansson, L., Glad, M., Mosbach, K., and Larsson, P.-O., 1989, High performance liquid affinity chromatography: a new tool in biotechnology, Trends Biotechnol. 7:179–186.CrossRefGoogle Scholar
  99. O’Keefe, D. O., Lee, A. L., and Yamazaki, S., 1992, Use of monobromobimane to resolve two recombinant proteins by reversed-phase high-performance liquid chromatography based on their cysteine content, J. Chromatogr. 627:137–143.CrossRefGoogle Scholar
  100. Oroszlan, P., Wicar, S., Teshima, G., Wu, S.-L., Hancock, W. S., and Karger, B. L., 1992, Conformational effects in the reversed-phase Chromatographie behaviour of recombinant human growth hormone (rhGH) and N-methionyl recombinant human growth hormone (Met-hGH), Anal Chem. 64:1623–1631.PubMedCrossRefGoogle Scholar
  101. Patel, K., and Borchardt, R. T., 1990, Deamination of asparaginyl residues in proteins: A potential pathway for chemical degradation of proteins in lyophilized dosage forms, J. Parenter. Sci. Technol. 44:300–301.PubMedGoogle Scholar
  102. Patrick, J. S., and Lagu, A. L., 1992, Determination of recombinant proinsulin fusion protein produced in E. coli using oxidative sulphitolysis and two-dimensional HPLC., Anal. Chem. 64:507–511.PubMedCrossRefGoogle Scholar
  103. Philips, T. M., 1991, Theory and practical aspects of high-performance immunoaffinity chromatography in: High-Performance Liquid Chromatography of Peptides and Proteins (C. T. Mant and R. S. Hodges, eds.), CRC Press, Boca Raton, FL, pp. 507–515.Google Scholar
  104. Poll, D. J., and Harding, D. R. K., 1989, Formic acid as a milder alternative to trifluoroacetic acid and phosphoric cid in two-dimensional peptide mapping, J. Chromatogr. 469: 231–239.PubMedCrossRefGoogle Scholar
  105. Poll, D. J., and Harding, D. R. K., 1991, Column-friendly reversed-phase high performance liquid chromatography of peptides and proteins using formic acid with sodium chloride and dynamic column coating with crown ethers, J. Chromatogr. 539:37–45.PubMedCrossRefGoogle Scholar
  106. Porath, J., 1988, High-performance immobilized-metal-ion affinity chromatography of peptides and proteins, J. Chromatogr. 443:3–11.PubMedCrossRefGoogle Scholar
  107. Renlund, S., Klintrot, I.-M., Nunn, M., Schrimsher, J. L., Wernstedt, C., and Hellman, U., 1990, Peptide mapping of HIV polypeptides expressed in E. coli. Quality control of different batches and identification of tryptic fragments containing residues of aromatic amino acids or cysteine, J. Chromatogr. 512:325–335.PubMedCrossRefGoogle Scholar
  108. Sadana, A., 1992, Inactivation of proteins and other biological macromolecules during Chromatographic methods of bioseparation, Bioseparation 3:145–165.PubMedGoogle Scholar
  109. Sadler, J., Micanovic, R., Katzenstein, G. E., Lewis, R. V., and Middaugh, C. R., 1984, Protein conformation and reversed-phase high performance liquid chromatography, J. Chromatogr. 317:93–101.PubMedCrossRefGoogle Scholar
  110. Scawen, M. D., 1991, Dye affinity chromatography, Anal. Proc. 28:143–144.Google Scholar
  111. Schafer, W. A., and Carr, P. W., 1991, Chromatographie characterization of a phosphate-modified zirconia support for bio-chromatographic applications, J. Chromatogr. 587: 149–160.PubMedCrossRefGoogle Scholar
  112. Schröder, W., Dumas, M. L., and Klein, U., 1990, Rapid high-performance liquid Chromatographie protein quantitation of purified recombinant Factor VIII containing interfering substances, J. Chromatogr. 512:213–218.CrossRefGoogle Scholar
  113. Scouten, W. H., 1991, Affinity chromatography for protein isolation, Curr. Opin. Biotechnol. 2:37–43.PubMedCrossRefGoogle Scholar
  114. Shalongo, W., Heid, P., and Stellwagen, E., 1993a, Kinetic analysis of the hydrodynamic transition accompanying protein folding using size exclusion chromatography. 1. Denaturant dependent baseline changes, Biopolymers 33:127–134.PubMedCrossRefGoogle Scholar
  115. Shalongo, W., Jagannadham, M., and Stellwagen, E., 1993b, Kinetic analysis of the hydrodynamic transition accompanying protein folding using size-exclusion chromatography. 2. Comparison of spectral and Chromatographie kinetic analyses, Biopolymers 33:135–145.PubMedCrossRefGoogle Scholar
  116. Sing, Y. L. K., Kroviarski, Y., Cochet, S., Dhermy, D., and Bertrand, O., 1992, High-performance hydrophobic interaction chromatography of proteins on reversed-phase supports coated with non-ionic surfactants of polyoxyethylene type, J. Chromatogr. 598:181–187.PubMedCrossRefGoogle Scholar
  117. Smith, J. B., Thevenon-Emeric, G., Smith, D. L., and Green, B., 1991, Elucidation of the primary structures of proteins by mass spectrometry, Anal. Biochem. 193:118–124.PubMedCrossRefGoogle Scholar
  118. Snider, J., Neville, C., Yuan, L.-C., and Bullock, J., 1992, Characterization of the heterogeneity of polyethylene glycol-modified Superoxide dismutase by Chromatographic and electrophoretic techniques, J. Chromatogr. 599:141–155.PubMedCrossRefGoogle Scholar
  119. Ståhlberg, J., Joensson, B., and Horvath, C., 1991, Theory for electrostatic interaction chromatography of proteins, Anal. Chem. 63:1867–1874.PubMedCrossRefGoogle Scholar
  120. Ståhlberg, J., Joensson, B., and Horvath, C., 1992, Combined effect of coulombic and van der Waals interactions in the chromatography of proteins, Anal. Chem. 64:3118–3124.PubMedCrossRefGoogle Scholar
  121. Stout, R. W., and DeStefano, J. J., 1985, A new, stabilized hydrophilic silica packing for the high-performance gel chromatography of macromolecules, J. Chromatogr. 326: 63–78.CrossRefGoogle Scholar
  122. Stout, R. W., Sivakoff, S. I., Ricker, R. D., Palmer, H. C., Jackson, M. A., and Odiorne, T. J., 1986, New ion-exchange packings based on zirconium oxide surface-stabilized, diolbonded, silica substrates, J. Chromatogr. 352:381–397.CrossRefGoogle Scholar
  123. Strömqvist, M., Holgersson, J., and Samuelsson, B., 1991, Glycosylation of extracelluar Superoxide dismutase studied by high-performance liquid chromatography and mass spectrometry, J. Chromatogr. 548:293–301.PubMedCrossRefGoogle Scholar
  124. Tagaki, T., 1990, Application of low-angle laser light scattering detection in the field of biochemistry. Review of recent progress, J. Chromatogr. 506:409–416.CrossRefGoogle Scholar
  125. Thévenon, G., and Regnier, F., 1989, Reversed-phase liquid chromatography of proteins with strong acids, J. Chromatogr. 476:499–511.PubMedCrossRefGoogle Scholar
  126. Unger, K., 1983, The application of size-exclusion chromatography to the analysis of biopolymers, Trends Anal. Chem. 2:271–274.CrossRefGoogle Scholar
  127. Unger, K., Anspach, B., and Giesche, H., 1984, Optimum support properties for protein separations by high-performance size-exclusion chromatography, J. Pharm. Biomed. Anal. 2:139–151.PubMedCrossRefGoogle Scholar
  128. Utsumi, J., Yamazaki, S., Kawaguchi, K., Kimura, S., and Shimizu, H., 1989a, Stability of human interferon-β1: Oligomeric human interferon-β1 is inactive but is reactivated by monomerization, Biochim. Biophys. Acta 998:167–172.PubMedCrossRefGoogle Scholar
  129. Utsumi, J., Yamamoto-Terasawa I., Yamazaki S., and Shimizu H., 1989b, Elimination of contaminating Escherichia coli peptides in the purification of Escherichia coli-derived recombinant human interferon-βl by zinc chelate affinity chromatography, J. Chromatogr. 490:193–197.PubMedGoogle Scholar
  130. Vosters, A. F., Evans, D. B., Tarpley, W. G., and Sharma, S. K., 1992, On the engineering of rDNA proteins for purification by immobilized metal affinity chromatography: Applications to alternating histidine-containing chimeric proteins from recombinant Escherichia coli, Protein Exp. Purif. 3:18–26.CrossRefGoogle Scholar
  131. Watson, E., and Kenney, W. C., 1988, High-performance size-exclusion chromatography of recombinant derived proteins and aggregated species, J. Chromatogr. 436:289–298.PubMedCrossRefGoogle Scholar
  132. Weir, M. P., and Sparks, J., 1987, Purification and renaturation of recombinant human interleukin-2, Biochem. J. 245:85–91.PubMedGoogle Scholar
  133. Welinder, B. S., and Sørensen, H. H., 1991, Alternative mobile phases for the reversed-phase high-performance liquid chromatography of peptides and proteins, J. Chromatogr. 537:181–199.PubMedCrossRefGoogle Scholar
  134. Welling, G. W., Geurts, T., van Gorkum, J., Damhof, R. A., Drijfhout, J. W., Bloemhoff, W., and Welling-Wester, S., 1990, Synthetic antibody fragment as ligand in immunoaffinity chromatography, J. Chromatogr. 512:337–343.PubMedCrossRefGoogle Scholar
  135. Welling, G. W., Hiemstra, Y., Feijlbrief, M., Oervell, C., van Ede, J., and Welling-Wester, S., 1992, Comparison of detergents for extraction and ion-exchange high-performance liquid chromatography of Sendai virus membrane proteins, J. Chromatogr. 599: 157–162.PubMedCrossRefGoogle Scholar
  136. Wirth, H. J., Unger, K. K., and Hearn, M. T. W., 1993, Influence of ligand density on the properties of metal-chelate affinity supports, Anal. Biochem. 208:16–25.PubMedCrossRefGoogle Scholar
  137. Withka, J., Moncuse, P., Baziotis, A., and Maskiewicz, R., 1987, Use of high-performance size-exclusion, ion-exchange, and hydrophobic interaction chromatography for the measurement of protein conformational change and stability, J. Chromatogr. 398: 175–202.PubMedCrossRefGoogle Scholar
  138. Wu, S.-L., Benedek, K., and Karger, B. L., 1986a, Thermal behaviour of proteins in high-performance hydrophobic-interaction chromatography, J. Chromatogr. 359:3–17.PubMedCrossRefGoogle Scholar
  139. Wu, S.-L., Figueroa, A., and Karger, B. L., 1986b, Protein conformational effects in hydrophobic interaction chromatography. Retention characterization and the role of the mobile phase additives and stationary phase hydrophobicity, J. Chromatogr. 371:3–27.PubMedCrossRefGoogle Scholar
  140. Yamada, T., Kato, K., Kawahara, K., and Nishimura, O., 1986, Separation of recombinant human interleukin-2 and methionyl interleukin-2 produced in E. coli, Biochem. Biophys. Res. Commun. 135:837–843.PubMedCrossRefGoogle Scholar
  141. Yang, F., Zhu, D.-W., Wang, J.-Y., and Lin, S.-X., 1992, Rapid purification yielding highly active 17β-hydroxysteroid dehydrogenase: Application of hydrophic interaction and affinity fast protein liquid chromatography, J. Chromatogr. 582:71–76.PubMedGoogle Scholar
  142. Yang, Y., and Verzele, M., 1987, High-speed and high-performance size-exclusion chromatography of proteins on a new hydrophilic polystyrene-based resin, J. Chromatogr. 391:383–393.PubMedCrossRefGoogle Scholar
  143. Yasukawa, K., Abe, F., Shida, N., Koizumi, Y., Uchida, T., Noguchi, K., Shima, K., 1992, High-performance affinity chromatography system for the rapid, efficient assay of glycosylated albumin, J. Chromatogr. 597:271–275.PubMedCrossRefGoogle Scholar
  144. Zachariou, M., and Hearn, M. T. W., 1992, High-performance liquid chromatography of amino acids, peptides and proteins, J. Chromatogr. 599:171–177.CrossRefGoogle Scholar
  145. Zhou, Z., and Smith, D. L., 1990, Location of disulphide bonds in antithrombin III, Biomed. Environ. Mass Spec. 19:782–786.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Joost J. M. Holthuis
    • 1
  • Reinoud J. Driebergen
    • 2
  1. 1.OctoPlus b. v.LeidenThe Netherlands
  2. 2.Ares SeronoChemin des MinesGenevaSwitzerland

Personalised recommendations