Skip to main content

Ionization and Electron Transport in Nonideal Plasma

  • Chapter
Transport and Optical Properties of Nonideal Plasma
  • 124 Accesses

Abstract

In a number of cases, experimental data on dense plasma transport coefficients differ substantially from theoretical calculations performed without taking into account interparticle interactions, as for an ideal plasma. For example, the electric conductivity of dense metal vapors, e.g., cesium or mercury, exceeds the ideal plasma values by orders of magnitude and can have a metallic character. Interparticle interactions influence the electron transport coefficients both through the degree of ionization, discussed in Chapter 3 for the weak interaction case, and through free electron mobility. At weak coupling, electrons move freely. In this case the degree of ionization is a well-defined quantity, while electron mobility studies are to be carried out independently in the framework of kinetic theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Likalter, Gaseous Metals, Sov. Phys. Usp. 35, 591-605 (1992).

    Google Scholar 

  2. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon Press, New York (1991).

    Google Scholar 

  3. L. D. Landau and E. M. Lifshitz, Mechanics, Pergamon Press, New York (1991).

    Google Scholar 

  4. Yu. V. Ivanov, A. N. Dremin, V. B. Mintsev, and V. E. Fortov, Electric conductivity of nonideal plasma, Zh. Eksp. Teor. Fiz. 71, 216–224 (1976).

    ADS  Google Scholar 

  5. B. I. Shklovskii and A. L. Efros, Electronic Properties of Doped Semiconductors, Springer, Berlin (1984).

    Book  Google Scholar 

  6. A. A. Likalter, Ionization equilibrium in cluster plasma with strong interparticle interaction, High Temp. 25, 1 (1987).

    Google Scholar 

  7. V. E. Fortov and I. T. Iakubov, Physics of Nonideal Plasma, Hemisphere, New York (1989).

    Google Scholar 

  8. A. G. Khrapak and I. T. Iakubov, Electrons in Dense Gases and Plasma, Nauka, Moscow (1981).

    Google Scholar 

  9. T. F. O’Malley, Extrapolation of electron-rare gas atom cross sections to zero energy, Phys. Rev. 130, 1020–1029 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  10. I. T. Iakubov and V. I. Roldughin, On electron mobility in dense gas and liquid with high atomic polarizability, Phys. Lett. 49A, 427–428 (1974).

    ADS  Google Scholar 

  11. A. A. Likalter, Negative ions in dense metal vapors, High Temp. 24, 467–472 (1986).

    Google Scholar 

  12. A. N. Lagarkov and A. K. Sarychev, Dynamics of an electron in a random field and the conductivity of a dense mercury plasma, High Temp. 16, 773–782 (1978).

    ADS  Google Scholar 

  13. F. Hensel, M. Stolz, G. Hohl, R. Winter, and W. Gotzlaff, Critical phenomena and the metal-nonmetal transition in liquid metals, J. Phis. IV (Paris) 1, C5–191–C5–205 (1991).

    Google Scholar 

  14. V. A. Alekseev, A. A. Vedenov, V. G. Ovcharenko, L. S. Krasitskaya, Yu. F. Ryzkov, and A. N. Starostin, The effect of saturation on the thermo-e.m.f. of cesium, High Temp. High Pres. 7, 677–678 (1975).

    Google Scholar 

  15. A. A. Likalter, Theory of a quasi-atomic gas, Sov. Phys. JETP 67, 2478–2482 (1988).

    Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford (1980).

    Google Scholar 

  17. F. Hensel, Critical behavior of metallic liquids, J. Phys.: Condens. Matter 2, SA33–SA45 (1990).

    Article  ADS  Google Scholar 

  18. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol. 1, Academic Press, New York (1966).

    Google Scholar 

  19. W. Zakovicz, I. J. Feng, and R. H. Pratt, Problems in the use of statistical average atom potentials for estimating average degree of ionization, J. Quant. Spectrosc. Radiat. Transfer 27, 329–334 (1981).

    Article  ADS  Google Scholar 

  20. R. More, in: Atoms in Unusual Situations (J. P. Briand, ed.), NATO ASI Series, Ser. B: Physics, Vol. 143, pp. 155–215, Plenum Press, New York and London (1986).

    Chapter  Google Scholar 

  21. D. A. Kirzhnitz, Yu. E. Lozovick, and G. V. Shpatakovskaya, Statistical model of matter, Sov. Phys. Usp. 18, 649–670 (1976).

    Article  ADS  Google Scholar 

  22. W. Kohn and P. Vashishta, in: Theory of Nonuniform Electron Gas (S. Lundkvist and N. H. March, ed.) Plenum Press, New York and London (1983).

    Google Scholar 

  23. D. A. Liberman, Self-consistent field model for condensed matter, Phys. Rev. B20, 4981–4989 (1979).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Likalter, A.A. (1995). Ionization and Electron Transport in Nonideal Plasma. In: Kobzev, G.A., Iakubov, I.T., Popovich, M.M. (eds) Transport and Optical Properties of Nonideal Plasma. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1066-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1066-0_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1068-4

  • Online ISBN: 978-1-4899-1066-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics