Ionization Equilibrium, Equation of State, and Electric Conductivity of Partially Ionized Plasma

  • A. L. Khomkin
  • I. T. Iakubov
  • A. G. Khrapak


This chapter deals with the equation of state, ionization equilibrium, and electric conductivity of a moderately nonideal plasma. At first, a classification of states is suggested and the nonideality criterion with respect to various parameters is introduced. As examples, argon and cesium plasmas are chosen. In the second section, we present the theory of a partially ionized three-component plasma, consisting of electrons, atoms, and atomic ions. Both the elementary theory and the theory developed using the grand canonic ensemble of statistical mechanics are given. The latter enables one to overcome the intrinsic difficulties in dealing with the peculiarities of the Coulomb interaction.


Partition Function Boltzmann Equation Virial Coefficient Ionization Equilibrium Electron Work Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, Pergamon Press, Oxford (1980).Google Scholar
  2. 2.
    A. A. Likalter, Interaction of atoms with electrons and ions in plasma, Zh. Eksp. Teor. Fiz. 56, 133–135 (1969).Google Scholar
  3. 3.
    L. P. Kudrin, Statistical Physics of Plasma, Atomizdat, Moscow (1974).Google Scholar
  4. 4.
    A. A. Vedenov and A. I. Larkin, Plasma equation of state, Zh, Eksp. Teor. Fiz. 36, 1133–1142 (1959).MathSciNetGoogle Scholar
  5. 5.
    T. L. Hill, Statistical Mechanics, McGraw-Hill, New York (1956).MATHGoogle Scholar
  6. 6.
    W. Ebeling, W. D. Kraeft, and D. Kremp, Theory of Bound States and Ionization Equilibrium in Plasmas and Solids, Academia-Verlag, Berlin (1976).Google Scholar
  7. 7.
    V. E. Fortov and I. T. Iakubov, Physics of Nonideal Plasma, Hemisphere, New York (1989).Google Scholar
  8. 8.
    V. K. Gryaznov, M. V. Zhernokletov, V. N. Zubarev, I. L. Iosilevskiy and V. E. Fortov, Thermodynamic properties of nonideal argon and xenon plasma, Zh. Exp. Teor. Fiz. 78, 573–585 (1980).ADSGoogle Scholar
  9. 9.
    A. L. Khomkin and I. A. Mulenko, in: XX International Conference on Phenomena in Ionized Gases (P. Valeschi and M. Vasseli, eds.), Contr. Papers, Vol. 2, pp. 401-402, Pisa (1991).Google Scholar
  10. 10.
    I. A. Mulenko and A. L. Khomkin, Electron-ion pairs in thermodynamics of nonideal Coulomb models and plasma, Teplofiz. Vys. Temp. 29, 72–78 (1991).Google Scholar
  11. 11.
    E. M. Lifshitz and L. P. Pitaevskii, Physical Kinetics, Pergamon Press, New York (1981).Google Scholar
  12. 12.
    A. A. Mihajlov, D. Djordjevich, M. M. Popovich, T. Meyer, M. Luft, and W. D. Kraeft, Determination of the electrical conductivity of a plasma on the basis of the Coulomb cut-off potential model, Contrib. to Plasma Phys. 29, 441–446 (1989).ADSCrossRefGoogle Scholar
  13. 13.
    L. Spitzer, Physics of Fully Ionized Gases, Interscience, New York (1956).MATHGoogle Scholar
  14. 14.
    A. Hochstim and G. Massel, in: Kinetic Processes in Gases and Plasma (A. R. Hochstim, ed.), pp. 126–221, Academic Press, New York, London (1969).Google Scholar
  15. 15.
    I. A. Mulenko and A. L. Khomkin, Solution of the Boltzmann equation for fully ionized plasma with short-range interaction potential between charged particles, Teplofiz. Vys. Temp. 29, 1260–1262 (1991).Google Scholar
  16. 16.
    I. A. Mulenko and A. L. Khomkin, Kinetic coefficients of low-temperature nonideal plasma, Institute for High Temperatures Preprint 1-326 (1991), p. 17.Google Scholar
  17. 17.
    Yu. V. Ivanov, A. N. Dremin, V. B. Mintsev, and V. E. Fortov, Electric conductivity of nonideal plasma, Zh. Eksp. Teor. Fiz. 71, 216–224 (1976).ADSGoogle Scholar
  18. 18.
    R. S. Devoto, Transport coefficients of ionized argon, Phys. Fluids 16, 616–623 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    M. M. Popovic, Y. Vitel, and A. A. Mihajlov, in: Strongly Coupled Plasma Physics (S. Ichimaru, ed.), pp. 561–569, Elsevier Science Publ. B.V./Yamada Science Foundation, Japan (1990).Google Scholar
  20. 20.
    B. M. Smirnov, Clusterized van der Waals Molecules, Gordon and Breach, Philadelphia (1992).Google Scholar
  21. 21.
    V. V. Gogoleva, V. I. Zitserman, A. Y. Polischuk, and I. T. Iakubov, Conductivity of plasma of dense alkalimetal vapors, High Temp. 22, 143–151 (1984).ADSGoogle Scholar
  22. 22.
    P. J. Forster, R. E. Leckenby, and E. J. Robbins, The ionization potentials of clustered atoms, J. Phys. B2, 438–483 (1969).ADSGoogle Scholar
  23. 23.
    A. G. Khrapak, Conductivity of weakly nonideal multicomponent plasma of alkali metals, High Temp. 17, 780–786 (1979).Google Scholar
  24. 24.
    D. I. Zhukhovitskii, Electric conductivity of dense cesium vapors, High Temp. 31, 36–39 (1993).Google Scholar
  25. 25.
    J. Frenkel, Kinetic Theory of Liquids, Dover, New York (1955).Google Scholar
  26. 26.
    V. V. Pogosov and A. G. Khrapak, Drop model of alkali metal vapor plasma, High Temp. 26, 145–152 (1988).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • A. L. Khomkin
    • 1
  • I. T. Iakubov
    • 1
  • A. G. Khrapak
    • 1
  1. 1.Institute for High TemperaturesRussian Academy of SciencesMoscowRussia

Personalised recommendations