A Family of Nonlinear Schrödinger Equations: Linearizing Transformations and Resulting Structure

  • H.-D. Doebner
  • G. A. Goldin
  • P. Nattermann


We examine a recently proposed family of nonlinear Schrödinger equations with respect to a group of transformations that linearize a subfamily of them. We investigate the structure of the whole family with respect to the linearizing transformations, and propose a new, invariant parameterization.


Gauge Invariant Group Parameter Nonlinear Transformation Schrodinger Equation Affine Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H.-D. Doebner and G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A 162: 397 (1992)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    H.-D. Doebner and G. A. Goldin, Group theoretical foundations of nonlinear quantum mechanics, in: “Annales de Fisica, Monografias, Vol. II”, p. 442, CIEMAT, Madrid (1993)Google Scholar
  3. 3.
    H.-D. Doebner and G. A. Goldin, Manifolds, general symmetries, quantization, and nonlinear quantum mechanics, in: “Proceedings of the First German-Polish Symposium on Particles and Fields, Rydzyna Castle, 1992”, p. 115, World Scientific, Singapore (1993)Google Scholar
  4. 4.
    H.-D. Doebner and G. A. Goldin, Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations, J. Phys. A: Math. Gen. 27: 1771 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    P. Nattermann, “Struktur und Eigenschaften einer Familie nichtlinearer Schrödingergleichungen”, Diplom thesis; Technical University of Clausthal (1993)Google Scholar
  6. 6.
    P. Nattermann, Solutions of the general Doebner-Goldin equation via nonlinear transformations, in: “Proceedings of the XXVI Symposium on Mathematical Physics, Torun, December 7–10, 1993”, p. 47, Nicolas Copernicus University Press, Torun (1994)Google Scholar
  7. 7.
    G. Auberson and P. C. Sabatier, On a class of homogemeous nonlinear Schrödinger equations, J. Math. Phys. 35: 4028 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    H.-D. Doebner, G. A. Goldin and P. Nattermann, work in progress, to be submitted for publication.Google Scholar
  9. 9.
    S. Weinberg, Testing quantum mechanics, Ann. Phys. (NY) 194: 336 (1989)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    P. Nattermann, Symmetry, local linearization, and gauge classification of the Doebner-Goldin equation, Clausthal-preprint ASI-TPA/8/95, Rep. Math. Phys. (to appear)Google Scholar
  11. 11.
    R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and Path Integrals”, McGraw-Hill, New York (1965).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • H.-D. Doebner
    • 1
    • 2
  • G. A. Goldin
    • 3
  • P. Nattermann
    • 2
  1. 1.Arnold Sommerfeld Institute for Mathematical PhysicsTechnical University of ClausthalClausthal-ZellerfeldGermany
  2. 2.Institute for Theoretical PhysicsTechnical University of ClausthalClausthal-ZellerfeldGermany
  3. 3.Departments of Mathematics and PhysicsRutgers UniversityNew BrunswickUSA

Personalised recommendations