A Family of Nonlinear Schrödinger Equations: Linearizing Transformations and Resulting Structure

  • H.-D. Doebner
  • G. A. Goldin
  • P. Nattermann

Abstract

We examine a recently proposed family of nonlinear Schrödinger equations with respect to a group of transformations that linearize a subfamily of them. We investigate the structure of the whole family with respect to the linearizing transformations, and propose a new, invariant parameterization.

Keywords

Manifold 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.-D. Doebner and G. A. Goldin, On a general nonlinear Schrödinger equation admitting diffusion currents, Phys. Lett. A 162: 397 (1992)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    H.-D. Doebner and G. A. Goldin, Group theoretical foundations of nonlinear quantum mechanics, in: “Annales de Fisica, Monografias, Vol. II”, p. 442, CIEMAT, Madrid (1993)Google Scholar
  3. 3.
    H.-D. Doebner and G. A. Goldin, Manifolds, general symmetries, quantization, and nonlinear quantum mechanics, in: “Proceedings of the First German-Polish Symposium on Particles and Fields, Rydzyna Castle, 1992”, p. 115, World Scientific, Singapore (1993)Google Scholar
  4. 4.
    H.-D. Doebner and G. A. Goldin, Properties of nonlinear Schrödinger equations associated with diffeomorphism group representations, J. Phys. A: Math. Gen. 27: 1771 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  5. 5.
    P. Nattermann, “Struktur und Eigenschaften einer Familie nichtlinearer Schrödingergleichungen”, Diplom thesis; Technical University of Clausthal (1993)Google Scholar
  6. 6.
    P. Nattermann, Solutions of the general Doebner-Goldin equation via nonlinear transformations, in: “Proceedings of the XXVI Symposium on Mathematical Physics, Torun, December 7–10, 1993”, p. 47, Nicolas Copernicus University Press, Torun (1994)Google Scholar
  7. 7.
    G. Auberson and P. C. Sabatier, On a class of homogemeous nonlinear Schrödinger equations, J. Math. Phys. 35: 4028 (1994)MathSciNetADSMATHCrossRefGoogle Scholar
  8. 8.
    H.-D. Doebner, G. A. Goldin and P. Nattermann, work in progress, to be submitted for publication.Google Scholar
  9. 9.
    S. Weinberg, Testing quantum mechanics, Ann. Phys. (NY) 194: 336 (1989)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    P. Nattermann, Symmetry, local linearization, and gauge classification of the Doebner-Goldin equation, Clausthal-preprint ASI-TPA/8/95, Rep. Math. Phys. (to appear)Google Scholar
  11. 11.
    R. P. Feynman and A. R. Hibbs, “Quantum Mechanics and Path Integrals”, McGraw-Hill, New York (1965).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • H.-D. Doebner
    • 1
    • 2
  • G. A. Goldin
    • 3
  • P. Nattermann
    • 2
  1. 1.Arnold Sommerfeld Institute for Mathematical PhysicsTechnical University of ClausthalClausthal-ZellerfeldGermany
  2. 2.Institute for Theoretical PhysicsTechnical University of ClausthalClausthal-ZellerfeldGermany
  3. 3.Departments of Mathematics and PhysicsRutgers UniversityNew BrunswickUSA

Personalised recommendations