Skip to main content

Autacoids as Mediators of Vasogenic Brain Oedema

  • Chapter

Abstract

Under several pathological conditions such as trauma, incomplete ischemia, reperfusion after complete ischemia, tumor, and allergic or inflammatory diseases an opening of the blood-brain barrier (BBB) may occur. The extravasation inducing vasogenic oedema is obviously induced by the release of several autacoids as will be discussed in an updated review of items published previously.1–3 The mainly discussed mediators are histamine, bradykinin, arachidonic acid, free radicals, leukotrienes, and serotonin. Five criteria will be discussed for some favoured mediator candidates: 1) the effect on BBB permeability, 2) the vasomotor action which may affect driving force for transmural bulk flow, 3) the influence on oedema formation, 4) the actual concentration of the mediator in the tissue or in the interstitial space under pathological conditions and 5) the therapeutic results after treatment with specific inhibitors or antagonists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Wahl, A. Unterberg, Baethmann, and L. Schilling L, Mediators of blood-brain-barrier dysfunction and formation of vasogenic brain oedema, J. Cereb. Blood Flow Metab. 8:621 (1988).

    Article  PubMed  CAS  Google Scholar 

  2. M. Wahl, L. Schilling, A. Unterberg, and A. Baethmann, Mediators of vascular and parenchymal mechanisms in secondary brain damage, Acta Neurochir. 57, Suppl.:64 (1993).

    CAS  Google Scholar 

  3. M. Wahl, L. Schilling, A. Unterberg, and A. Baethmann, Opening of the blood-brain barrier by autacoids, in: “CNS Barriers and Modern CSF Diagnostics. Centennial of Quincke’s Lumbar Puncture”, K. Felgenhauer, M. Holzgraefe, and H.W. Prange, eds., VCH, Weinheim (1993).

    Google Scholar 

  4. L. Schilling and M. Wahl, Histaminergic effects on cerebral hemodynamics, in: “The Regulation of Cerebral Blood Flow”, J.W. Phillis, ed., CRC Press, Boca Raton (1993).

    Google Scholar 

  5. L. Schilling, A. Bultmann, and M. Wahl, Lack of effect of topically applied nicotine on pial arteriole diameter and blood brain barrier integrity in the cat, Clin. Invest. 70:210 (1992).

    CAS  Google Scholar 

  6. A. Findling, L. Schilling, A. Bultmann, and M. Wahl, Computerised image analysis in conjunction with fluorescence microscopy for the study of blood-brain barrier permeability in vivo, Pflügers Arch. 427:86 (1994).

    Article  PubMed  CAS  Google Scholar 

  7. L. Schilling and M. Wahl, Opening of the blood-brain barrier during cortical superfusion with histamine. Brain Res. 653:289 (1994).

    Article  PubMed  CAS  Google Scholar 

  8. A.M. Butt, H.C. Jones, and N.J. Abbott, Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study, J. Physiol. 429:47 (1990).

    PubMed  CAS  Google Scholar 

  9. A.M. Butt and H.C. Jones, Effect of histamine and antagonists on electrical resistance across the blood-brain barrier in rat brain-surface microvessels, Brain Res. 569:100 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. A.M. Butt, Electrical resistance measurements of blood-brain barrier permeability, This issue (1994).

    Google Scholar 

  11. A.S. Easton and P.A. Fraser, Regulation of cerebral microvascular brain permeability by histamine and CGRP, Proc. Int. Union Physiol. Sci. XXXII 88:17/P (1993).

    Google Scholar 

  12. F.R. Domer, S.B. Boertje, E.G. Bing, and I. Reddix, Histamine-and acetylcholine-induced changes in the permeability of the blood-brain barrier of normotensive and spontaneously hypertensive rats Neuropharmacology 22:615 (1983).

    Article  PubMed  CAS  Google Scholar 

  13. E. Dux, and F. Joó, Effects of histamine on brain capillaries. Fine structural and immunohistochemical studies after intracarotid infusion, Exp. Brain Res. 47:252 (1982).

    Article  PubMed  CAS  Google Scholar 

  14. P.M. Gross, G.M. Teasdale, D.I. Graham, W.J. Angerson, and A.M. Harper, Intra-arterial histamine increases blood-brain transport in rats, Am. J. Physiol. 243:H307 (1982).

    PubMed  CAS  Google Scholar 

  15. A. Gulati, K.N. Dhawan, R. Shukla, R.C. Srimal, and B.N. Dawan, Evidence for the involvement of histamine in the regulation of blood-brain barrier permebility, Pharmacol. Res. Commun. 17:39 (1985).

    Google Scholar 

  16. R. Oishi, M. Baba, M. Nishibori, Y. Itoh, and K. Saeki, Involvement of central histaminergic and cholinergic systems in the morphine-induced increase in blood-brain barrier permeability to sodium fluorescein in mice, Naunyn-Schmiedeberg’s Arch. Pharmacol. 339:159 (1989).

    CAS  Google Scholar 

  17. P.M. Gross, A.M. Harper, and G.M. Teasdale, Cerebral circulation and histamine: 2. Responses of pial veins and arterioles to receptor agonists, J. Cereb. Blood Flow Metab. 1:219 (1981).

    Article  PubMed  CAS  Google Scholar 

  18. M. Wahl, and W. Kuschinsky, The dilating effect of histamine on pial arteries of cats and its mediation by H2 receptors, Circ. Res. 44:161 (1976).

    Article  Google Scholar 

  19. R.G. Dacey, and J.E. Bassett, Histaminergic vasodilatation of intracerebral arterioles in the rat, J. Cereb. Blood Flow Metab. 7:327 (1987).

    Article  PubMed  CAS  Google Scholar 

  20. G. DeLey, J. Weyne, G. Demeester, and I. Leusen I, Response of local blood flow in the caudate nucleus of the cat to intraventricular administration of histamine, Stroke 13:499 (1982).

    Article  CAS  Google Scholar 

  21. E.L. Orr, Cryogenic lesions induce a mast cell-dependent increase in cerebral histamine levels in the mouse, Neurochem. Pathol. 8:43 (1988).

    CAS  Google Scholar 

  22. S. Mohanty, P.K. Dey, H.S. Sharma, S. Singh, J.P.N. Chansouria, and Y. Olsson, Role of histamine in traumatic brain edema. An experimental study in the rat, J. Neurol. Sci. 90:87 (1989).

    Article  PubMed  CAS  Google Scholar 

  23. N. Adachi, R. Oishi, and K. Saeki, Changes in the metabolism of histamine and monoamines after occlusion of the middle cerebral artery in rats, J. Neurochem. 57:61 (1991).

    Article  PubMed  CAS  Google Scholar 

  24. N. Adachi, Y. Itoh, R. Oishi, and K. Saeki, Direct evidence for increased continuous histamine release in the striatum of conscious freely moving rats produced by middle cerebral artery occlusion, J. Cereb. Blood Flow Metab. 12:477 (1992).

    Article  PubMed  CAS  Google Scholar 

  25. L. Schilling and M. Wahl, Effects of antihistaminics on experimental brain edema, Acta Neurochir. Suppl. 60:79 (1994).

    PubMed  CAS  Google Scholar 

  26. H.P.J.M. Leistra and W.D. Dietrich, Effect of histamine antagonist cimetidine on infarct size in the rat, J. Neurotrauma 10:83 (1993).

    Article  PubMed  CAS  Google Scholar 

  27. H.S. Sharma, F. Nyberg, J. Cervos-Navarro, and P.K. Dey, Histamine modulates heat stress-induced changes in blood-brain barrier permeability, cerebral blood flow, brain oedema and serotonin levels: an experimental study in conscious young rats, Neuroscience. 50:445 (1992).

    Article  PubMed  CAS  Google Scholar 

  28. F. Joó, J. Kovacs, P. Szerdahelyi, P. Temesvari, and A. Tosaki, Treatment with histamine receptor antagonists of ischemic brain edema, in: “Pharmacology of Cerebral Ischemia 1992”, J. Krieglstein and H. Oberpichler-Schwenk, eds., Wissenschaftliche Verlagsgesellschaft, Stuttgart (1992).

    Google Scholar 

  29. E. Csanda, Radiation brain edema, in: “Brain Edema,” J. Cervos-Navarro, and R. Ferszt, eds., Raven Press, New York (1980).

    Google Scholar 

  30. F. Joó, A. Zücs, and E. Csanda, Metiamide-treatment of brain oedema in animals exposed to 90yttrium irradiation, J. Pharm. Pharmacol. 28:162 (1976).

    Article  PubMed  Google Scholar 

  31. L. Sztriha, F. Joö, and P. Szerdahelyi, Histamine H2-receptors participate in the formation of brain edema induced by kainic acid in rat thalamus, Neurosci. Lett. 75:334 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. A. Unterberg, M. Wahl, and A. Baethmann, Effects of bradykinin on permeability and diameter of pial vessels in vivo, J. Cereb. Blood Flow Metab. 4:574 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. M. Wahl, A. Unterberg, and A. Baethmann, Intravital fluorescence microscopy for the study of blood-brain-barrier function, Int. J. Microcirc. Clin. Exp. 4:3 (1985).

    PubMed  CAS  Google Scholar 

  34. M. Wahl and L. Schilling, Effects of bradykinin in the cerebral microcirculation, in: “The Regulation of Cerebral Blood Flow”, J.W. Phillis, ed., CRC Press, Boca Raton (1993).

    Google Scholar 

  35. P. Homayoun, and S.I. Harik, Bradykinin receptors of cerebral microvessels stimulate phosphoinositide turnover, J. Cereb. Blood Flow Metab. 11:557(1991).

    Article  PubMed  CAS  Google Scholar 

  36. M.A. Murray, D.D. Heistad, and W.G. Mayhan, Role of protein kinase C in bradykinin-induced increases in microvascular permeability, Circ. Res. 68:1340 (1991).

    Article  PubMed  CAS  Google Scholar 

  37. F.L. Guillot, and K.L. Audus, Angiotensin peptide regulation of fluid-phase endocytosis in brain microvessel endothelial cell monolayers, J. Cereb. Blood Flow Metab. 10:827 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. N.J. Abbott and P.A. Revest, Control of brain endothelial permeability, Cerebrovasc. Brain Metab. Rev. 3:39 (1991).

    PubMed  CAS  Google Scholar 

  39. S.-P. Olesen and C. Crone, Substances that rapidly augment ionic conductance of endothelium in cerebral venules, Acta Physiol. Scand. 127:233 (1986).

    Article  PubMed  CAS  Google Scholar 

  40. M. Wahl, A.R. Young, L. Edvinsson, and F. Wagner, Effects of bradykinin on pial arteries and arterioles in vitro and in situ, J. Cereb. Blood Flow Metab. 3:231 (1983).

    Article  PubMed  CAS  Google Scholar 

  41. E.T. Whalley, and M. Wahl, Analysis of bradykinin receptor mediating relaxation of cat cerebral arteries in vivo and in vitro, Naunyn-Schmiedeberg’s Arch. Pharmacol. 323:66 (1983).

    Article  CAS  Google Scholar 

  42. T. Kamitani, M.H. Little, and E.F. Ellis, Effect of leukotrienes, 12-HETE, histamine, bradykinin, and 5-hydroxytryptamine on in vivo rabbit cerebral arteriolar diameter, J. Cereb. Blood Flow Metab. 5:554 (1985).

    Article  PubMed  CAS  Google Scholar 

  43. H.A. Kontos, E.P. Wei, J.T. Povlishock, and C.W. Christman, Oxygen radicals mediate the cerebral arteriolar dilatation from arachidonate and bradykinin in cats, Circ. Res. 55:295 (1984).

    Article  PubMed  CAS  Google Scholar 

  44. H.A. Kontos, E.P. Wei, R.C. Kukreja, E.F. Ellis, and M.L. Hess, Differences in endothelium-dependent cerebral dilation by bradykinin and acetylcholine, Am. J. Physiol. 258:H1261 (1990).

    PubMed  CAS  Google Scholar 

  45. R.G. Dacey, J.E. Bassett, and M. Takayasu, Vasomotor responses of rat intracerebral arterioles to vasoactive intestinal peptide, substance P, neuropeptide Y, and bradykinin, J. Cereb. Blood Flow Metab. 8:254 (1988).

    Article  PubMed  CAS  Google Scholar 

  46. A. Unterberg, A. Baethmann, The kallikrein-kinin system as mediator on vasogenic brain edema. Part 1: Cerebral exposure to bradykinin and plasma, J. Neurosurg. 61:87 (1984).

    Article  PubMed  CAS  Google Scholar 

  47. I.R. Whittle, I.R. Piper, and J.D. Miller, The role of bradykinin in the etiology of vasogenic brain edema and perilesional brain dysfunction, Acta Neurochir. 115:53 (1992).

    Article  PubMed  CAS  Google Scholar 

  48. M. Wahl, A. Unterberg, E.T. Whalley, A. Baethmann, A.R. Young, L. Edvinsson, and F.F.W. Wagner, Cerebrovascular effects of bradykinin, in: “Neural Regulation of Brain Circulation”, C. Owman, J.E. Hardebo, eds., Elsevier, New York (1986).

    Google Scholar 

  49. M. Wahl, A. Unterberg, E.T. Whalley, A. Baethmann, A.R. Young, L. Edvinsson, and F. Wagner, Effect of bradykinin on cerebral hemodynamics and blood-brain-barrier function in: “Peptidergic Mechanisms in the Cerebral Circulation”, L. Edvinsson, and J. McCulloch, eds., Horwood, Chichester (1987).

    Google Scholar 

  50. K. Maier-Hauff, A.J. Baethmann, M. Lange, L. Schürer, and A. Unterberg, The kallikrein-kinin system as mediator in vasogenic brain edema. Part 2: Studies on kinin formation in focal and perifocal brain tissue, J. Neurosurg. 61:97 (1984).

    Article  PubMed  CAS  Google Scholar 

  51. E.F. Ellis, J. Chao, and M.L. Heizer, Brain kininogen following experimental brain injury: evidence for a secondary event, J. Neurosurg. 71:437 (1989).

    Article  PubMed  CAS  Google Scholar 

  52. J. Xu, C.Y. Hsu, H. Junker, S. Chao, E.L. Hogan, and J. Chao, Kininogen and kinin in experimental spinal cord injury, 7. Neurochem. 57:975 (1991).

    Article  CAS  Google Scholar 

  53. T. Kamiya, Y. Katayama, F. Kashiwagi, and A. Terashi, The role of bradykinin in mediating ischémic brain edema in rats, Stroke 24:571 (1993).

    Article  PubMed  CAS  Google Scholar 

  54. A. Unterberg, C. Dautermann, A. Baethmann, and W. Müller-Esterl, The kallikrein-kinin system as mediator in vasogenic brain edema, Part 3: Inhibition of the kallikrein-kinin system in traumatic brain swelling, J. Neurosurg. 64:269 (1986).

    Article  PubMed  CAS  Google Scholar 

  55. E.F. Ellis, S.A. Holt, E.P. Wei, and H.A. Kontos HA, Kinins induce abnormal vascular reactivity, Am. J. Physiol. 255:H397 (1988).

    PubMed  CAS  Google Scholar 

  56. A. Unterberg, M. Wahl, F. Hammersen, and A. Baethmann, Permeability and vasomotor response of cerebral vessels during exposure to arachidonic acid, Acta Neuropathol. 73:209 (1987).

    Article  PubMed  CAS  Google Scholar 

  57. P.H. Chan, R. A. Fishman, J. Caronna, J.W. Schmidley, G. Priolieau, and J. Lee, Induction of brain edema following intracerebral injection of arachidonic acid, Ann. Neurol. 13:625 (1983).

    Article  PubMed  CAS  Google Scholar 

  58. S. Wakai, K. Aritake, T. Asano, and K. Takakura K, Selective destruction of the outer leaflet of the capillary endothelial membrane after intracerebral injection of arachidonic acid in the rat, Acta Neuropathol. 58:303 (1982).

    Article  PubMed  CAS  Google Scholar 

  59. E.P. Wei, M.D. Ellison, H.A. Kontos, and J.T. Povlishock, O2 radicals in arachidonate-induced increased blood-brain barrier permeability to proteins. Am. J. Physiol. 251:H693 (1986).

    PubMed  CAS  Google Scholar 

  60. L. Sztriha and A.L. Betz, Oleic acid reversibly opens the blood brain barrier, Brain Res 550:25 (1991).

    Article  Google Scholar 

  61. H.A. Kontos, E.P. Wei, J.T. Povlishock, W.D. Dietrich, C.J. Magiera, and E.P. Ellis, Cerebral arteriolar damage by arachidonic acid and prostaglandin G2, Science 209:1242 (1980).

    Article  PubMed  CAS  Google Scholar 

  62. K.L. Black, and J.T. Hoff, Leukotrienes increase blood-brain barrier permeability following intraparenchymal injections in rats, Ann. Neurol. 18:349 (1985).

    Article  PubMed  CAS  Google Scholar 

  63. W. Lo and P. Clair, Leukopenia reduces blood-brain barrier (BBB) damage in acute cerebral inflammation, Soc. Neurosci. Abst. 19:225 (1993).

    Google Scholar 

  64. D.W. Busija, and D.D. Heistad, Effects of indomethacin on cerebral blood flow during hypercapnia in cats, Am. J. Physiol. 244:H519 (1983).

    PubMed  CAS  Google Scholar 

  65. A. Unterberg, A. Baethmann, M. Wahl, L. Schürer, and A. Marmarou, New aspects in the formation of vasogenic brain edema, in: “Surgical Research. Recent Concepts and Results”, A. Baethmann, and U. Messmer, eds., Springer, Heidelberg (1987).

    Google Scholar 

  66. A. Unterberg, T. Polk, E. Ellis, and A. Marmarou, Enhancement of infusion induced brain edema by mediator compounds, in: “Brain Edema. Pathogenesis, Imaging and Therapy”, Adv Neurol 52, D.M. Long, ed., Raven Press, New York (1990).

    Google Scholar 

  67. A. Baethmann, K. Maier-Hauff, L. Schürer, M. Lange, C. Guggenbichler, W. Vogt, K. Jacob, and O. Kempski, Release of glutamate and of free fatty acids in vasogenic brain edema, J. Neurosurg. 70:578 (1989).

    Article  PubMed  CAS  Google Scholar 

  68. N.G. Bazan, and E.B. Rodriguez de Turco, Membrane lipids in the pathogenesis of brain oedema. Phospholipids and arachidonic acid, the earliest membrane components changed at the onset of ischemia, in: “Brain Edema” J. Cervos-Navarro, R. Ferszt, eds., Raven Press, New York, (1980).

    Google Scholar 

  69. K.K. Bhakoo, H.A. Crockard, and P.T. Lascelles, Regional studies of changes in brain fatty acids following experimental ischaemia and reperfusion in the gerbil. J. Neurochem. 43:1025 (1984).

    Article  PubMed  CAS  Google Scholar 

  70. E.P. Wei, C.W. Christman, H.A. Kontos, and J.T. Povlishock, Effects of oxygen radicals on cerebral arterioles, Am. J. Physiol 248:H157 (1985).

    PubMed  CAS  Google Scholar 

  71. S.P. Olesen, Free oxygen radicals decrease electrical resistance of microvascular endothelium in brain, Acta Physiol. Scand. 129:181 (1987).

    Article  PubMed  CAS  Google Scholar 

  72. P.H. Chan, J.W. Schmidley, R.A. Fishman, and S.M. Longar, Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals, Neurology 34:315 (1984).

    Article  PubMed  CAS  Google Scholar 

  73. A. Unterberg, M. Wahl, and A. Baethmann, Effects of free radicals on permeability and vasomotor response of cerebral vessels, Acta Neuropathol. 76:238 (1988).

    Article  PubMed  CAS  Google Scholar 

  74. W.I. Rosenblum, Effects of free radical generation on mouse pial arterioles: probable role of hydroxylradicals, Am. J. Physiol. 245:H139 (1983).

    PubMed  CAS  Google Scholar 

  75. H.B. Demopoulos, E.S. Flamm, M.L. Seligman, J.A. Mitamura, and J. Ransohoff, Membrane perturbations in central nervous system injury: theoretical basis for free radical damage and a review of the experimental data, in: “Neural Trauma”, A.J. Popp, R.S. Bourke, L.R. Nelson, and H.K. Kimelberg, eds., Raven Press, New York (1979).

    Google Scholar 

  76. H.A. Kontos and E.P. Wei, Superoxide production in experimental brain injury, J. Neurosurg. 64:803 (1986).

    Article  PubMed  CAS  Google Scholar 

  77. B.K. Siesjö, G. Bendek, T. Koide, E. Westerberg, and T. Wieloch, Influence of acidosis on lipid peroxidation in brain tissues in vitro, J. Cereb. Blood Flow Metab. 5:253 (1985).

    Article  PubMed  Google Scholar 

  78. O. Suzuki, and K. Yagi, Formation of lipoperoxide in brain edema induced by cold injury, Experientia 30:248 (1974).

    Article  PubMed  CAS  Google Scholar 

  79. J. Lundgren, H. Zhang, C.D. Agardh, M.L. Smith, P.J. Evans, B. Halliwell, and B.K. Siesjö, Acidosis-induced ischémic brain damage: Are free radicals involved? J. Cereb. Blood Flow Metab. 11:587(1991).

    Article  PubMed  CAS  Google Scholar 

  80. P.H. Chan, S. Longar, and R.A. Fishman, Protective effects of liposome-entrapped Superoxide dismutase on posttraumatic brain edema, Ann. Neurol. 21:540 (1987).

    Article  PubMed  CAS  Google Scholar 

  81. D.M. Long, “Brain Edema. Pathogenesis, Imaging and Therapy”, Adv Neurol 52, Raven Press, New York (1990).

    Google Scholar 

  82. Y. Ando, M. Inoue, M. Hirota, Y. Morino, and S. Araki, Effect of Superoxide dismutase derivative on cold-induced brain edema, Brain Res. 477:286 (1989).

    Article  PubMed  CAS  Google Scholar 

  83. W.M. Armstead, R. Mirro, O.P. Thelin, M. Shibata, S.L. Zuckerman, D.R. Shanklin, D.W. Busija, and C.W. Leffler, Polyethylene glycol Superoxide dismutase and catalase attenuate increases in blood-brain barrier permeability after ischemia in piglets, Stroke 23:755 (1992).

    Article  PubMed  CAS  Google Scholar 

  84. P.H. Chan, G.Y. Yang, S.F. Chen, E. Carlson, and C.J. Epstein, Cold-induced brain edema and infarction are reduced in transgenic mice overexpressing CuZn-superoxide dismutase, Ann. Neurol. 29:482 (1991).

    Article  PubMed  CAS  Google Scholar 

  85. T.D. Oury, C.A. Piantadosi, and J.D. Crapo, Cold-induced brain edema in mice, J. Biol. Chem. 268:15394(1993).

    PubMed  CAS  Google Scholar 

  86. J.S. Beckmann, J. Chen, H. Ischiropoulos, and K. A. Conger, Inhibition of nitric oxide synthesis and cerebral protection, in: “Pharmacology of Cerebral Ischemia 1992”, J. Krieglstein and H. Oberpichler-Schwenk, eds., Wissenschaftliche Verlagsgesellschaft, Stuttgart (1992).

    Google Scholar 

  87. D.A. Pelligrino, Saying NO to cerebral ischemia, J. Neurosurg. Anesth. 5:221 (1993).

    CAS  Google Scholar 

  88. A. Unterberg, W. Schmidt, M. Wahl, E.F. Ellis, A. Marmarou, and A. Baethmann, Evidence against leukotrienes as mediators of brain edema, J. Neurosurg. 74:773 (1991).

    Article  PubMed  CAS  Google Scholar 

  89. A. Unterberg, W. Schmidt, T. Polk, M. Wahl, E. Ellis, A. Marmarou, and A. Baethmann, Evidence against leukotrienes as mediators of brain edema, J. Cereb. Blood Flow Metab. 7, Suppl. 1:S625 (1987).

    Google Scholar 

  90. A. Unterberg, W. Schmidt, M. Wahl, and A. Baethmann, “Role of Leukotrienes as Mediator Compounds in Brain Edema”, in: “Brain Edema. Pathogenesis, Imaging and Therapy”, Adv Neurol 52, D.M. Lond, ed., Raven Press, New York (1990).

    Google Scholar 

  91. X.-Y. Hua, S.-E. Dahlen, J.M. Lundberg, S. Hammarström, and P. Hedqvist, Leukotrienes C4, D4 and E4 cause widespread and extensive plasma extravasation in the guinea pig, Naunyn-Schmiedeberg’s Arch. Pharmacol. 330:136(1985).

    Article  CAS  Google Scholar 

  92. T. Baba, K.L. Black, K. Ikezaki, K. Chen, and D.P. Becker, Intracarotid infusion of leukotriene C4 selectively increases blood-brain barrier permeability after focal ischemia in rats, J. Cereb. Blood Flow Metab. 11:638(1991).

    Article  PubMed  CAS  Google Scholar 

  93. C.C. Chio, T. Baba, and K.L. Black, Selective blood-tumor barrier disruption by leukotrienes, J. Neurosurg. 77:407 (1992).

    Article  PubMed  CAS  Google Scholar 

  94. T. Baba, C.C. Chio, and K.L. Black, The effect of 5-lipoxygenase inhibition on blood-brain barrier permeability in experimental brain tumors, J. Neurosurg. 77:403 (1992).

    Article  PubMed  CAS  Google Scholar 

  95. W.I. Rosenblum, Constricting effect of leukotrienes on cerebral arterioles of mice, Stroke 16:262 (1985).

    Article  PubMed  CAS  Google Scholar 

  96. D.W. Busija, C.W. Leffler, and D.G. Beasley, Effects of leukotrienes C4, D4 and E4 on cerebral arteries of newborn pigs, Pediatr. Res. 20:973 (1986).

    Article  PubMed  CAS  Google Scholar 

  97. A. Dembinska-Kiec, T. Simmet, and B. A. Peskar, Formation of leukotriene C4-like material by rat brain tissue, Eur. J. Pharmacol. 99:57 (1984).

    Article  PubMed  CAS  Google Scholar 

  98. M.A. Moskowitz, K.J. Kiwak, K. Hekimian, and L. Levine, Synthesis of compounds with properties of leukotrienes C4 and D4 in gerbil brains after ischemia and reperfusion, Science 224:886 (1984).

    Article  PubMed  CAS  Google Scholar 

  99. K.J. Kiwak, M.A. Moskowitz, and L. Levins, Leukotriene production in gerbil brain after ischemic insult, subarachnoid hemorrhage, and concussive injury, J. Neurosurg. 62:865 (1985).

    Article  PubMed  CAS  Google Scholar 

  100. K.L. Black, J.T. Hoff, J.E. McGillicuddy, and S.S. Gebarski, Increased leukotriene C4 and vasogenic edema surrounding brain tumors in humans, Ann. Neurol. 19:592 (1986).

    Article  PubMed  CAS  Google Scholar 

  101. R.J. Dempsey, M.W. Roy, K. Meyer, D.E. Cowen, and M.E. Maley, Development of cyclooxygenase and lipoxygenase metabolites of arachidonic acid after transient cerebral ischemia, J. Neurosurg. 64:118(1986).

    Article  PubMed  CAS  Google Scholar 

  102. S.T. Chen, C.Y. Hsu, E.L. Hogan, P.V. Halushka, O.I. Linet, and F.M. Yatsu, Thromboxane, prostacyclin, and leukotrienes in cerebral ischemia, Neurology 36:466 (1988).

    Article  Google Scholar 

  103. P. Megyeri, C.S. Abraham, P. Temesvari, J. Kovacs, T. Vas, and C.P. Speer, Recombinant human tumor necrosis factor α constricts pial arterioles and increases blood brain barrier permeability in newborn piglets, Neurosci. Lett. 148:137 (1992).

    Article  PubMed  CAS  Google Scholar 

  104. K.S. Kim, C.A. Wass, A.S. Cross, and S.M. Opal, Modulation of blood-brain barrier permeability by tumor necrosis factor and antibody to tumor necrosis factor in the rat, Lymphokine Cytokine Res. 11:293(1992).

    PubMed  CAS  Google Scholar 

  105. G.A. Rosenberg, P.G. McGuire, J.E. Dencoff, E.Y. Estrada, A.N. Clark, and W.G. Stetler-Stevenson, Metalloproteinases and serine proteinases link cytokines to blood-brain barrier injury in rat, Soc. Neurosci. Abst. 19:692 (1993).

    Google Scholar 

  106. Y. Yamasaki, T. Suzuki, H. Yamaya, N. Matsuura, H. Onodera, and K. Kogure, Possible involvement of interleukin-1 in ischémic brain edema formation, Neurosci. Lett. 142:45 (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wahl, M., Schilling, L., Unterberg, A., Baethmann, A. (1995). Autacoids as Mediators of Vasogenic Brain Oedema. In: Greenwood, J., Begley, D.J., Segal, M.B. (eds) New Concepts of a Blood—Brain Barrier. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1054-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1054-7_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1056-1

  • Online ISBN: 978-1-4899-1054-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics