The Dependency of Influx Across the Blood-Brain Barrier on Blood Flow and the Apparent Flow-Independence of Glucose Influx During Stress

  • J. D. Fenstermacher
  • L. Wei
  • V. Acuff
  • S.-Z. Lin
  • J.-L. Chen
  • D. Bereczki
  • T. Otsuka
  • H. Nakata
  • A. Tajima
  • F.-J. Hans
  • J.-F. Ghersi-Egea
  • W. Finnegan
  • G. Richardson
  • H. Haspel
  • C. Patlak

Abstract

The major functions of the blood circulating through microvascular beds are to: 1) delivery nutrients, blood-borne messengers, and immunoactive materials to the surrounding cells and 2) remove locally produced metabolites, hormones, toxic substances, and heat from the tissue. Useful changes in blood flow through local microvascular networks would be expected to be linked to alterations in one or more of these delivery and/or removal needs (luxury perfusion — often observed following severe ischemia or stroke — is a condition in which blood flow apparently greatly exceeds tissue need and is an example of a seemingly useless or “futile” change in blood flow).

Keywords

Permeability Catheter Convection Ischemia Albumin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bereczki, D., Wei, L., Acuff, V., Gruber, K., Tajima, A., Patlak, C., and Fenstermacher, J., 1992, Technique-dependent variations in cerebral microvessel blood volumes and hematocrits in rat brain, J. Appl. Physiol. 73:918.PubMedGoogle Scholar
  2. Bereczki, D., Wei, L., Otsuka, T., Acuff, V., Pettigrew, K., Patlak, C., and Fenstermacher, J., 1993a, Hypoxia increases velocity of blood flow through parenchymal microvascular systems in rat brain, J. Cereb. Blood Flow Metab. 13:475.PubMedCrossRefGoogle Scholar
  3. Bereczki, D., Wei, L., Otsuka, T., Hans, F.-J., Acuff, V., Patlak, C., and Fenstermacher, J., 1993b, Hypercapnia slightly raises blood volume and sizably elevates flow velocity in brain microvessels, Am. J. Physiol. 264:H1360.PubMedGoogle Scholar
  4. Chen, J.-L., Acuff, V., Bereczki, D., Hans, F.-J., Otsuka, T., Wei, L, Finnegan, W., Patlak, C., and Fenstermacher, J., 1994a, Slightly altered permeability-surface area products imply some cerebral capillary recruitment during hypercapnia, Microvasc. Res. (in press).Google Scholar
  5. Chen, J.-L., Wei, L., Bereczki, D., Hans, F.-J., Otsuka, T., Acuff, V., Richardson, G., Patlak, C., and Fenstermacher, J., 1994b, Virtually unaltered permeability-surface area products imply little capillary recruitment in brain with hypoxia, Microcirculation 1:35.PubMedCrossRefGoogle Scholar
  6. Duelli, R., and Kuschinsky, W., 1993, Change in brain capillary diameter during hypocapnia and hypercapnia, J. Cereb. Blood Flow Metab. 13:1025.PubMedCrossRefGoogle Scholar
  7. Hans, F.-J., Wei, L., Bereczki, D., Acuff, V., DeMaro, J., Chen, J.-L., Otsuka, T., Patlak, C., and Fenstermacher, J., 1993, Nicotine increases microvascular blood flow and flow velocity in three groups of brain areas, Am. J. Physiol. 265:H2142.PubMedGoogle Scholar
  8. Hertz, M., and Paulson, O., 1982, Transfer across the human blood-brain barrier: evidence for capillary recruitment and for a paradox glucose permeability increase in hypocapnia, Microvasc. Res. 24:364.PubMedCrossRefGoogle Scholar
  9. Lin, S.-Z., Nakata, H., Tajima, A., Gruber, K., Acuff, V., Patlak C, and Fenstermacher, J., 1990, Quantitative autoradiographic assessment of 55Fe-RBC distribution in rat brain, J. Appl. Physiol. 69:1637.PubMedGoogle Scholar
  10. Otsuka, T., Wei, L., Acuff, V., Shimizu, A., Pettigrew, K., Patlak, C., and Fenstermacher, J., 1991a, Variations in local cerebral blood flow response to high-dose pentobarbital sodium in the rat, Am. J. Physiol. 261:H110.PubMedGoogle Scholar
  11. Otsuka, T., Wei, L., Bereczki, D., Acuff, V., Patlak, C., and Fenstermacher, J., 1991b, Pentobarbital produces dissimilar changes in glucose influx and utilization in the brain, Am. J. Physiol. 261:R265.PubMedGoogle Scholar
  12. Pawlik, G., Rackl, A., and Bing, R.J., 1981, Quantitative capillary topography and blood flow in the cerebral cortex of cats: an in vivo microscopic study, Brain Res. 208:35.PubMedCrossRefGoogle Scholar
  13. Rosenblum, W. I., and Zweifach, B., 1963, Cerebral microcirculation in the mouse brain, Arch. Neurol. 9:414.PubMedCrossRefGoogle Scholar
  14. Sakurada, O., Kennedy, C., Jehle, J., Brown, J.D., Carbin, G.L., and Sokoloff, L., 1978, Measurement of local cerebral blood flow with iodo[14C]antipyrine, Am. J. Physiol. 234:H59.PubMedGoogle Scholar
  15. Tajima, A., Nakata, H., Lin, S.-Z., Acuff, V., and Fenstermacher, J., 1992, Differences and similarities in albumin and red cell flows through cerebral microvessels, Am. J. Physiol. 262:H1515.PubMedGoogle Scholar
  16. Villringer, A., Dirnagl, U., Gebhardt, R.E., and Einhaupl, K.M., 1991, An in vivo approach to assess the capillary recruitment hypothesis in the brain microcirculation using laser scanning microscopy (Abstract), J. Cereb. Blood Flow Metab. 11 (Suppl. 2): S441.Google Scholar
  17. Wei, L., Otsuka, T., Acuff, V., Bereczki, D., Pettigrew, K., Patlak, C., and Fenstermacher, J., 1993, The velocities of red cell and plasma flows through parenchymal microvessels of brain are decreased by pentobarbital, J. Cereb. Blood Flow Metab. 13:487.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • J. D. Fenstermacher
    • 1
    • 2
  • L. Wei
    • 2
  • V. Acuff
    • 2
  • S.-Z. Lin
    • 2
  • J.-L. Chen
    • 2
  • D. Bereczki
    • 2
  • T. Otsuka
    • 2
  • H. Nakata
    • 2
  • A. Tajima
    • 2
  • F.-J. Hans
    • 2
  • J.-F. Ghersi-Egea
    • 2
  • W. Finnegan
    • 2
  • G. Richardson
    • 2
  • H. Haspel
    • 1
  • C. Patlak
    • 3
  1. 1.Department of AnesthesiologyHenry Ford HospitalDetroitUSA
  2. 2.Department of Neurological SurgeryState University of New YorkStony BrookUSA
  3. 3.Department of SurgeryState University of New YorkStony BrookUSA

Personalised recommendations