Developing Views of the Blood-Brain Barrier

  • Michael W. B. Bradbury


It is helpful sometimes to look at our work in the context of both past history and of current developments. Just as plants and animals develop and evolve so do the ideas of science. One may detect earliest mention, mainstreams of development, defunct issues and growing points — the latter being very dependent on practicable techniques as well as on concepts.


Trace Metal Large Neutral Amino Acid Free Zinc Cerebral Microvessels Unstirred Water Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abbott, N.J., 1992, Comparative Physiology of the blood-brain barrier, in “Handbook of Experimental Pharmacology Volume 103 Physiology and Pharmacology of the Blood-Brain Barrier”, M.W.B. Bradbury, ed., Springer-Verlag, Berlin, Heidelberg, etc., pp.371.CrossRefGoogle Scholar
  2. Abbott, N.J. and Bundgaard, M., 1992, Electron-dense tracer evidence for a blood-brain barrier in the cuttlefish Sepia officinalis, J. Neurocytol., 21:276.PubMedCrossRefGoogle Scholar
  3. Biedl, A. and Kraus, R., 1898, Uber einer bisher unbekannte toxische Wirkung der Gallensäuren auf das Zentralnervensystem, Zentralblatt inn. Med., 19:1185.Google Scholar
  4. Bradbury, M.W.B., 1994, Transport of Fe2+ into brain during cerebrovascular perfusion in the anaesthetized rat, J. Physiol. (Lond.), 479:37P.Google Scholar
  5. Brightman, M.W. and Reese, T.S., 1969, Junctions between intimately opposed cell membranes in the vertebrate brain, J. Cell. Biol., 40:648.PubMedCrossRefGoogle Scholar
  6. Bundgaard, M., 1982, The ultrastructure of cerebral blood capillaries in the ratfish Chimaera monstrosa, Cell Tissue Res., 226:145.PubMedCrossRefGoogle Scholar
  7. Buxani-Rice, S., Ueda, F. and Bradbury, M.W.B., 1994, Transport of zinc-65 at the blood-brain barrier during short cerebrovascular perfusion in the rat: its enhancement by histidine, J. Neurochem., 62:665.PubMedCrossRefGoogle Scholar
  8. Crone, C., 1965, The permeability of brain capillaries to non-electrolytes, Acta Physiol. Scand., 64:407.PubMedCrossRefGoogle Scholar
  9. Davson, H. and Spaziani, E., 1959, The blood-brain barrier, J. Physiol. (Lond.), 149:135.Google Scholar
  10. Deane, R. and Bradbury, M.W.B., 1990, Transport of lead-203 at the blood-brain barrier during short cerebrovascular perfusion with saline in the rat, J. Neurochem., 54:905.PubMedCrossRefGoogle Scholar
  11. Easton, A.S. and Fraser, P.A., 1994, Variable restriction of albumin diffusion across inflamed cerebral microvessels of the anaesthetized rat, J. Physiol. (Lond.), 475:147.Google Scholar
  12. Ehrlich, P., 1902, Uber die Beziehungen von chemischer Constitution, Vertheilung und pharmakologischer Wirkung, reprinted and translated in ‘Collected Studies in Immunity’, 1906, John Wiley, New York, pp.567.Google Scholar
  13. Fraser, P.A. and Dallas, A.D., 1990, Measurement of filtration coefficient in single cerebral microvessels in the frog, J. Physiol. (Lond.), 423:343.Google Scholar
  14. Goldmann, E.E., 1909, Die äussere und innere Sekretion des gesunden und kranken Organismus im Lichte der ‘vitalen Farbung’, Beitr. Klin. Chirurg., 64:192.Google Scholar
  15. Goldmann, E.E., 1913, Vitalfarbung am Zentral-nervensystem, Abh. Preuss. Akad. Wiss., Phys.-Math. Kl. 1:1.Google Scholar
  16. Krogh, A., 1946, The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally, Proc. Roy. Soc. B., 133:140.CrossRefGoogle Scholar
  17. Lewandowsky, M., 1900, Zur Lehre der Cerebrospinal flüssigkeit, Z. Klin. Med., 40:480.Google Scholar
  18. May, P.M., Linder, P.W. and Williams, D.R., 1977, Computer simulation of metal-ion equilibria in biofluids: models for the low-molecular-weight complex distribution of calcium (II), magnesium (II), manganese (II), iron (III), copper (II), zinc (II) and lead (II) ions in human blood plasma, J. Chem. Soc. Dalton: 588.Google Scholar
  19. Maynard, E.A., Schultz, R.L. and Pease, D.C., 1957, Electron microscopy of the vascular bed of the rat cerebral cortex, Am. J. Anat., 100:409.PubMedCrossRefGoogle Scholar
  20. Oldendorf, W.H., 1970, Measurement of brain uptake of radio-labelled substances using a tritiated water standard, Brain Res., 24:372.PubMedCrossRefGoogle Scholar
  21. Reese, T.S. and Karnovsky, M.J., 1967, Fine structural localization of a blood-brain barrier to exogenous peroxidase, J. Cell Biol., 34:207.PubMedCrossRefGoogle Scholar
  22. Schultz, R.L., Maynard, E.A. and Pease, D.C., 1957, Electron microscopy of neurons and neuroglia of cerebral cortex and corpus callosum, Am. J. Anat., 100:369.PubMedCrossRefGoogle Scholar
  23. Takasato, Y., Rapoport, S.I. and Smith, Q.R., 1982, An in situ brain perfusion technique to study cerebrovascular transport in the rat, Am. J. Physiol. 247:H484.Google Scholar
  24. Taylor, E., 1993, Transfer of iron across cellular barriers, Ph.D. thesis, University of London.Google Scholar
  25. Wycoff, R.W.G. and Young, J.Z., 1956, The motoneuron surface, Proc. Roy. Soc. B., 144:440.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Michael W. B. Bradbury
    • 1
  1. 1.Physiology Group, Biomedical Sciences DivisionKing’s College LondonLondonUK

Personalised recommendations