Waveguide Coupling Gratings: Attractive Features and Dangerous Pitfalls

  • Olivier Parriaux
  • Vladimir A. Sychugov
  • Alexander V. Tishchenko

Abstract

Grating coupling is the waveguide access technology which in principle allows for the integration of the access function together with the integrated optical processing functions on a monolithic planar substrate. The fundamental merit of grating coupling technology is its geometrical and, to a large extent, its technological compatibility with the planar processes which define the integrated signal processing waveguide circuit. However, poor coupling efficiency, highly dispersive character, absence of user friendly modelling tools, fabrication difficulties have long prevented this technology from being implemented into practical sensor and microsystem designs. Most of these difficulties are being overcome and grating couplers are envisaged as part of commercial system applications. This contribution will review the points where recent technological progress are decisive, illustrate for the future users some attractive features of waveguide coupling gratings and also underline for the designer some of the traps that may be encountered.

Keywords

Quartz Chromium Lithium Attenuation Coherence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.C. Chang, and T. Tamir, Simplified approach to surface-wave scattering by blazed dielectric gratings, Applied Optics, 19: 282 (1980)ADSCrossRefGoogle Scholar
  2. 2.
    M.T. Gale, and L. Baraldi, Replicated microstructures for integrated optics, Int. Symposium on Integrated Optics, Lindau, Germany, 11–15 April 1994, paper 2213–01Google Scholar
  3. R.E. Kunz, J. Edlinger, P. Sixt, and M. T. Gale, Replicated chirped waveguide gratings for optical sensing applications, Eurosensors VIII on Solid State Transducers, Sept. 25–28, 1994, Toulouse, Paper No. 72Google Scholar
  4. 3.
    R. Waldhäusl, E.-B. Kley, P. Darmberg, A. Bräuer, and W. Karthe, Grating couplers in planar polymer waveguides, ibid., paper 2213–15Google Scholar
  5. 4.
    R. Plontke, A low energy electron exposure system for nanometric structures, NATO-Workshop on “Nanolithography: a Borderland between STM, EB, IB and X-Ray Lithography”, Rome/Frascati, April 6–8, 1993Google Scholar
  6. E.-B. Kley, Oberflächenprofile für Profilmasken der integrierte Optik and Mikrooptik, VDI-Berichte Nr 1102, 27–28 Oct. 1993, MünchenGoogle Scholar
  7. 5.
    J.-L. A. Roumiguihres, and M. Nevière, US Patent 4, 389, 094, June 21, 1993Google Scholar
  8. 6.
    T. Suhara, and H. Nishihara, Integrated optics components and devices using periodic structures, IEEE J. of Quantum Electronics, 22: 845 (1986)ADSCrossRefGoogle Scholar
  9. 7.
    Ii. Vuilliomenet, L. Falco, O. Parriaux, and M. Nevière, Transfer of submicron period gratings by conventional chromium mask photolithography, Int. Symposium on Integrated Optics, Lindau, Germany, 11–15 April 1994, paper 2213–02.Google Scholar
  10. 8.
    M. Okai, S. Tsuji, N. Chinone, and T. Harada, Novel method to fabricate corrugation for a R/4-shifted distributed feedback laser using a grating photomask, Appl. Phys. Lett., 55: 415 (1989)ADSCrossRefGoogle Scholar
  11. 9.
    F. Clube, S. Gray, D. Struchen, and J.-C. Tisserand, Holographic mask aligner, Optical Engineering, 32: 2403 (1993)ADSCrossRefGoogle Scholar
  12. 10.
    V.A. Sychugov, A.V. Tishchenko, M.S. Klimov, and O. Parriaux, CAD-Tool for integrated optic coupling gratings, Microsystem Technologies 90, Berlin, 10–13 Sept. 1990, Springer-Verlag, pp. 44–51Google Scholar
  13. 11.
    E. Glytsis, T. Gaylord, and D. Brundrett, Rigorous coupled-wave analysis and applications of grating diffraction, Critical Reviews Vol. CR49, SPIE press93.Google Scholar
  14. N. Cateau, and J.-P. Hugonin, Algorithm for the rigorous coupled-wave analysis of grating diffraction, J. Opt. Soc. Am. A, 11: 1321 (1994)ADSGoogle Scholar
  15. 12.
    BRITE EURAM II project “FOA” BE-5072Google Scholar
  16. 13.
    R. Ulrich, Efficiency of optical grating couplers, J. Opt. Soc. Am. 63: 1449 (1973)Google Scholar
  17. 14.
    T. Tamir, in “Integrated Optics”, T. Tamir, Ed., Vol. 7 of Topics in Applied Physics, Berlin: Springer-Verlag, 1979, p. 105Google Scholar
  18. 15.
    V.A. Kiselev, Diffraction coupling of radiation into a thin-film waveguide, Soy. J. Quantum Electron., 4: 872 (1975)Google Scholar
  19. 16.
    S. Um, M. Shinohara, T. Suhara and H. Nishihara, Integrated-optic grating - scale - displacement sensor using linearly focusing grating couplers, IEEE Photonics Technology Letters, 6: 239 (1994)ADSCrossRefGoogle Scholar
  20. 17.
    M.S. Klimov, V.A. Sychugov, A.V. Tishchenko and O. Parriaux, Optimization of optical waveguide grating couplers, Fiber and Integrated Optics, 11: 85 (1992)CrossRefGoogle Scholar
  21. 18.
    V.A. Sychugov, and A.V. Tishchenko, Change of polarization of light in a corrugated waveguide, Sov. Phys. Lebedev Inst. Rep., No 8, 1979Google Scholar
  22. M.S. Klimov. V.A. Sychugov and AV. Tishchenko, Non-collinear geometry for highly efficient excitation of a corrugated waveguide, Sov. J. Quantum Electron., 22: 173 (1992)ADSCrossRefGoogle Scholar
  23. 19.
    M.S. Klimov, V.A. Sychugov, and A.V. Tishchenko, Corrugation waveguide excitation by Gaussian beam: general case, Soy. Lightwave Commun., 1: 85 (1991).Google Scholar
  24. 20.
    V.A. Sychugov, and A.V. Tishchenko, Light emission from a corrugated dielectric waveguide, Sov. J. Quantum Electron., 10: 1175 (1980)ADSCrossRefGoogle Scholar
  25. 21.
    A. Teimel, Technology and applications of grating interferometers in high-precision measurement, Precision Engineering, 14: 147 (1992)CrossRefGoogle Scholar
  26. 22.
    TA. Strasser, and M.C. Gupta, Integrated optic grating-coupler-based optical head, Appl. Opt. 32: 7454 (1993)ADSCrossRefGoogle Scholar
  27. 19.
    M.S. Klimov, V.A. Sychugov, and A.V. Tishchenko, Corrugation waveguide excitation by Gaussian beam: general case, Sol,. Lightwave Commun., 1: 85 (1991).Google Scholar
  28. 20.
    V.A. Sychugov, and A.V. Tishchenko, Light emission from a corrugated dielectric waveguide, Soy. J. Quantum Electron., 10: 1175 (1980)ADSCrossRefGoogle Scholar
  29. 21.
    A. Teimel, Technology and applications of grating interferometers in high-precision measurement, Precision Engineering, 14: 147 (1992)CrossRefGoogle Scholar
  30. 22.
    T.A. Strasser, and M.C. Gupta, Integrated optic grating-coupler-based optical head, Appl. Opt. 32: 7454 (1993)ADSCrossRefGoogle Scholar
  31. 23.
    S. Nishiwaki, J. Asada, and S. Uchida, Optical head employing a concentric-circular focusing grating coupler, Applied Optics, 33: 1819 (1994)ADSCrossRefGoogle Scholar
  32. 24.0.
    Parriaux, S. Gidon, and F. Cochet, Fiber-optic polarizer using plasmon-guided wave resonance, ECOC’81, Copenhagen, pp. P6–1–P6–4 (1981)Google Scholar
  33. 25.
    L. Li, G. Wylangowski, DN. Payne, and R.D. Birch, Broad-band metal/glass single-mode fibre polarizers, Electron. Lett., 22: 1020 (1986)ADSCrossRefGoogle Scholar
  34. 26.
    A.M. Prokhorov, A.A. Spikhal’skii, and V.A. Sychugov, Emission of E and H waves from a corrugated section of a diffused waveguide, Soy. J. Quantum Electron., 6: 1211 (1976)Google Scholar
  35. 27.
    A.M. Prokhorov, AA. Spikhal’skii, V.A. Sychugov, and A.A. Khakimov, Polarization effects in corrugated optical waveguide, Soy. J. Quantum Electron., 8: 1202 (1978)ADSCrossRefGoogle Scholar
  36. 28.
    A.M. Prokhorov. A.A. Spikhal’skii, and V.A. Sychugov, Brewster analogs in diffraction, Soy. Tech. Phys. Lett., 4: 23 (1978)Google Scholar
  37. 29.
    A.A. Zlenko, V.A. Kiselev, A.M. Prokhorov, A.M. Spikhal’skii, and V.A. Sychugov, Soy. J. Quantum Electron., 4: 839 (1975)ADSCrossRefGoogle Scholar
  38. 30.
    LA. Avrutsky, A.S. Svakhin, and V.A. Sychugov, Interference phenomena in waveguides with two corrugated boundaries, J. Modern Optics, 36: 1303 (1989)ADSCrossRefGoogle Scholar
  39. 31.
    I.A. Avrutsky, A.S. Svakhin, V.A. Sychugov, and 0. Parriaux, High efficiency single order waveguide grating coupler, Optics Letters, Vol. 15: 1446 (1990)ADSCrossRefGoogle Scholar
  40. 32.
    J.C. Brazas, S. Barry, J. Hirsh, L. Li, and AL. McKeon, Optical waveguide gratings having double-surface corruagation for highly efficient input coupling, Diffractive Optics: design, fabrication and applications, Topical Meeting, Rochester, 6–9 June 94, p. 190Google Scholar
  41. 33.
    LA. Avrutsky, A.S. Svakhin, V.A. Sychugov, and A.V. Tishchenko, Unidirectional coupling of radiation out of a composite dielectric waveguide, Soy. J. Quantum. Electron. 19: 225 (1989)ADSCrossRefGoogle Scholar
  42. 34.0.
    Parriaux, Integrated optic displacement interferometers and flat optical antennae, Technisches Messen, 58: 158 (1991)Google Scholar
  43. 35.
    A.V. Tikhomirov, B.A. Usievich, V.A. Sychugov, and 0. Parriaux, Optimization and control of grating coupling to/from a silicon-based optical waveguide, submitted to J. Lightwave Tech. Google Scholar
  44. 36.
    A.V. Tikhomirov, B.A. Usievich, V.A. Sychugov, and 0. Parriaux, Conditions for optimum grating coupling efficiency in silicon-based waveguide technologies, CLEO-Europe, Amsterdam, 28 Aug. - 2 Sept. 1994, p. 177.Google Scholar
  45. 37.
    G.A. Golubenko, A.S. Svakhin, V.A. Sychugov, A.V. Tishchenko, E. Popov, and L. Mashev, Diffraction characterstics of planar corrugated waveguides, Optics & Quantum Electronics, 18: 123 (1986)CrossRefGoogle Scholar
  46. S.S. Wang, and R. Magnusson, Theory and applications of guided-mode resonance filter, Applied Opt.ics 32: 2606 (1993)Google Scholar
  47. 38.
    G.A. Golubenko, A.S. Svakhin, V.A. Sychugov, and A.V. Tishchenko, Total reflection of light from a corrugated surface of a dielectric waveguide, Soy. J. Quantum Electron., 15: 886 (1985)ADSCrossRefGoogle Scholar
  48. 39.
    I.A. Avrutsky, V.A. Sychugov, Reflection of a beam of finite size from a corrugated waveguide, J. of Modern Optics, 36: 1527 (1989)ADSCrossRefGoogle Scholar
  49. 40.
    I.A. Avrutsky, G.A. Golubenko, V.A. Sychugov, and A.V. Tishchenko, Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface, Soy. J. Quantum Electron., 16: 1063 (1986)ADSCrossRefGoogle Scholar
  50. 41.
    A.A. Zlenko, VA. Kiselev, AM. Prokhorov, A.A. Spikhal’skii, and V.A. Sychugov, Emission of surface light waves from a corrugated section of a thin-film waveguide, Soy. J. Quantum Electron. 5: 1325 (1975)ADSCrossRefGoogle Scholar
  51. 42.0.
    Partiaux, and P. Dierauer, Normalized expressions for the optical sensitivity of evanescent wave sensors, Optics Letters, 19: 508 (1994)ADSCrossRefGoogle Scholar
  52. 23.
    S. Nishiwaki, J. Asada, and S. Uchida, Optical head employing a concentric-circular focusing grating coupler, Applied Optics, 33: 1819 (1994)ADSCrossRefGoogle Scholar
  53. 24.0.
    Parriaux, S. Gidon, and F. Cochet, Fiber-optic polarizer using plasmon-guided wave resonance, ECOC’81, Copenhagen, pp. P6–1–P6–4 (1981)Google Scholar
  54. 25.
    L. Li, G. Wylangowski, D.N. Payne, and R.D. Birch, Broad-band metal/glass single-mode fibre polarizers, Electron. Lett., 22: 1020 (1986)ADSCrossRefGoogle Scholar
  55. 26.
    A.M. Prokhorov, A.A. Spikhal’skii, and V.A. Sychugov, Emission of E and H waves from a corrugated section of a diffused waveguide, Sov. J. Quantum Electron., 6: 1211 (1976)Google Scholar
  56. 27.
    A.M. Prokhorov, A.A. Spikhal’skii, V.A. Sychugov, and A.A. Khakimov, Polarization effects in corrugated optical waveguide, Sov. J. Quantum Electron., 8: 1202 (1978)ADSCrossRefGoogle Scholar
  57. 28.
    A.M. Prokhorov. A.A. Spikhal’skii, and V.A. Sychugov, Brewster analogs in diffraction, Soy. Tech. Phys. Lett., 4: 23 (1978)Google Scholar
  58. 29.
    A.A. Zlenko, V.A. Kiselev, A.M. Prokhorov, A.M. Spikhal’skii, and V.A. Sychugov, Soy. J. Quantum Electron., 4: 839 (1975)ADSCrossRefGoogle Scholar
  59. 30.
    I.A. Avrutsky, A.S. Svakhin, and V.A. Sychugov, Interference phenomena in waveguides with two corrugated boundaries, J. Modern Optics, 36: 1303 (1989)ADSCrossRefGoogle Scholar
  60. 31.
    I.A. Avrutsky, A.S. Svakhin, V.A. Sychugov, and O. Parriaux, High efficiency single order waveguide grating coupler, Optics Letters, Vol. 15: 1446 (1990)ADSCrossRefGoogle Scholar
  61. 32.
    J.C. Brazas, S. Barry, J. Hirsh, L. Li, and AL. McKeon, Optical waveguide gratings having double-surface corruagation for highly efficient input coupling, Diffractive Optics: design, fabrication and applications, Topical Meeting, Rochester, 6–9 June 94, p. 190Google Scholar
  62. 33.
    I.A. Avrutsky, A.S. Svakhin, V.A. Sychugov, and A.V. Tishchenko, Unidirectional coupling of radiation out of a composite dielectric waveguide, Soy. J. Quantum. Electron. 19: 225 (1989)ADSCrossRefGoogle Scholar
  63. 34.0.
    Parriaux, Integrated optic displacement interferometers and flat optical antennae, Technisches Messen, 58: 158 (1991)Google Scholar
  64. 35. A.V. Tikhomirov, B.A. Usievich, V.A. Sychugov, and O. Parriaux, Optimization and control of grating coupling to/from a silicon-based optical waveguide, submitted to J. Lightwave Tech. Google Scholar
  65. 36.
    A.V. Tikhomirov, B.A. Usievich, V.A. Sychugov, and O. Parriaux, Conditions for optimum grating coupling efficiency in silicon-based waveguide technologies, CLEO-Europe, Amsterdam, 28 Aug. - 2 Sept. 1994, p. 177.Google Scholar
  66. 37.
    G.A. Golubenko, A.S. Svakhin, V.A. Sychugov, A.V. Tishchenko, E. Popov, and L. Mashev, Diffraction characterstics of planar corrugated waveguides, Optics & Quantum Electronics, 18: 123 (1986)CrossRefGoogle Scholar
  67. S.S. Wang, and R. Magnusson, Theory and applications of guided-mode resonance filter, Applied Optics, 32: 2606 (1993)ADSCrossRefGoogle Scholar
  68. 38.
    G.A. Golubenko, A.S. Svakhin, V.A. Sychugov, and A.V. Tishchenko, Total reflection of light from a corrugated surface of a dielectric waveguide, Soy. J. Quantum Electron., 15: 886 (1985)ADSCrossRefGoogle Scholar
  69. 39.
    I.A. Avrutsky, V.A. Sychugov, Reflection of a beam of finite size from a corrugated waveguide, J. of Modern Optics, 36: 1527 (1989)ADSCrossRefGoogle Scholar
  70. 40.
    I.A. Avrutsky, G.A. Golubenko, V.A. Sychugov, and A.V. Tishchenko, Spectral and laser characteristics of a mirror with a corrugated waveguide on its surface, Soy. J. Quantum Electron., 16: 1063 (1986)ADSCrossRefGoogle Scholar
  71. 41.
    A.A. Zlenko, V.A. Kiselev, AM. Prokhorov, A.A. Spikhal’skii, and V.A. Sychugov, Emission of surface light waves from a corrugated section of a thin-film waveguide, Soy. J. Quantum Electron. 5: 1325 (1975)ADSCrossRefGoogle Scholar
  72. 42.0.
    Parriaux, and P. Dierauer, Normalized expressions for the optical sensitivity of evanescent wave sensors, Optics Letters, 19: 508 (1994)ADSCrossRefGoogle Scholar
  73. 43.
    Parriaux, and P. Sixt, Sensitivity optimization of grating coupled evanescent wave immuno-sensors, to be published in Sensors and Actuators B Google Scholar
  74. 44.
    M. Heming, B. Danielzik, J. Otto, V. Paquet, and Ch. Fattinger, Plasma impulse CVD deposited TiO2 waveguiding films: properties and potential applications in integrated optical sensor systems, Mat. Res. Soc. Symp. Proc. 276: 117 (1992)CrossRefGoogle Scholar
  75. 45.
    B. Geh, and A. Dorsel, Integrated optical grating scale readout employing a double grating, Appl. Opt., 31: 5241 (1992)ADSCrossRefGoogle Scholar
  76. 46.
    G. Voirin, P. Sixt, O. Partiaux, and Li Yan, Digitized dual-frequency coupling grating for waveguide displacement interferomeery, CLEO-Europe, Amsterdam, 28 Aug. - 1 Sept 1994, p. 339Google Scholar
  77. 47.
    K.A. Bates, Lifeng Li, R.L. Roncone, and JJ. Burke, Gaussian beams from variable groove depth grating couplers in planar waveguides, Appl. Opt., 32: 2112 (1993)ADSCrossRefGoogle Scholar
  78. 48.
    S. Um, Y. Furukawa, T. Suhara, and H. Nishihara, Linearly focusing grating coupler for integrated-optic parallel pickup, J. Opt. Soc. Am. A, 7: 1759 (1990)ADSCrossRefGoogle Scholar
  79. 49.
    M. Nevière, The homogeneous problem, in “Electromagnetic Theory of Gratings”, R. Petit ed., Springer-Verlag, pp. 123–157 (1980)Google Scholar
  80. 50.
    D.L. Hetherington, R.K. Kostuk, and M.C. Gupta, Dispersion compensation for an integrated optic grating utilizing a transmission volume hologram, Appl. Opt., 32: 303 (1993)ADSCrossRefGoogle Scholar
  81. 51.
    R. J. Davies, and D. Pollard-Knight, An optical biosensor system for molecular interaction studies, American Biotechnology Laboratory, July 1993Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Olivier Parriaux
    • 1
  • Vladimir A. Sychugov
    • 2
  • Alexander V. Tishchenko
    • 2
  1. 1.CSEM Swiss Center for Electronics and Microtechnology Inc.NeuchâtelSwitzerland
  2. 2.lnstitute of General PhysicsMoscowRussia

Personalised recommendations