Distributed Feedback Lasers for Diode Laser Gas Sensing

  • Pam York
  • Ray Martinelli
  • Ray Menna
  • Dave Cooper
  • Harris Riris
  • Clint Carlise


Cryogenic lead-salt (II–VI) diode laser spectroscopy and other infrared techniques such as fourier transform and nondispersive infrared spectroscopy have been used to sense trace gases1. However, there are several limitations, including high cost (>$50K) and lack of portability. Consequently, usage is limited primarily to laboratories or industries forced to comply with federal regulations. The application of room temperature diode lasers to gas sensing allows for a ~10-100x cost reduction, low power consumption, portability, partper-billion detection sensitivity, remote sensing, real-time and interference-free sensors. Such features allow access to applications which require a small and inexpensive, yet highly sensitive gas detection system. Examples include exhaust monitors in automobiles, in situ industrial stack pollution monitors, semiconductor process control, natural gas leak detection in homes, and poisonous gas detection on the battle field and in manufacturing facilities. Important medical applications include glucose monitoring and the ex situ diagnosis of internal disorders by monitoring trace gases on human breath2,3.


Distribute Bragg Reflector Human Breath Distribute Feedback Laser Heat Sink Temperature Diode Laser Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Air Monitoring by Spectroscopic Techniques, Ed. Markus W. Sigrist, Vol. 127 in Chemical Analysis, Series Ed. J. D. Winefordner, John-Wiley (1994).Google Scholar
  2. 2.
    David E. Cooper and Ramon U. Martinelli, Laser Focus World, November (1992).Google Scholar
  3. 3.
    M. Phillips, Scien. Amer. 276, 74 (1992).CrossRefGoogle Scholar
  4. 4.
    Long Wavelength Semiconductor Lasers, G. P. Aggrawal and N. K. Dutta, Van NostrandReinhold (1986).Google Scholar
  5. 5.
    D. E. Cooper and R. E. Warren, J. Opt. Soc. Am. B. 4, 470 (1987).ADSCrossRefGoogle Scholar
  6. 6.
    D. E. Cooper et al., Appl. Opt. 32, 6727 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    D. A. Schoeller et al, Am. J. Clin. Nutr., 33, 2375 (1980).Google Scholar
  8. 8.
    Peter Werle, Franz Slemr, Manfred Gehrtz and Christof Bräuchle, Appl. Optics 28, 1638 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    A. E. Willner, M. Kuznetsov, I. P. Kaminow, U. Koren, T. L. Koch, C. A. Burrus, G. Raybon, Photon. Tech. Lett. 1, 360 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    Laser Diode Reference Manual, Industrial Laser Technology, Inc. Clinton Twp, Michigan.Google Scholar
  11. 11.
    Heterostructure Lasers Part A & B, H. C. Casey and M. B. Panish, Academic Press ( 1978 ); Quantum Well lasers, Ed. Peter Zory, Academic Press (1994).Google Scholar
  12. 12.
    G. W. Turner, H. K. Choi, D. R. Calawa, J. V. Patano, and J. W. Chludzinski, J. Vac. Sci. Tech. 12 1266 (1994)CrossRefGoogle Scholar
  13. 13.
    H. K Choi, S. J. Eglash, and G. W. Turner, Appl. Phys. Lett. 64, 2474 (1994)ADSCrossRefGoogle Scholar
  14. 14.
    S. J. Eglash and H. K. Choi, Appl. Phys. Lett. 64, 833 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    H. Lee, P. K. York, R. J. Menna, R. U. Martinelli, D. Z. Garbuzov, and S. Y. Narayan, submitted Appl. Phys. Lett., Sept. 1994.Google Scholar
  16. 16.
    D. Garbozov, H. Lee, P. K York, R. J. Menna, R. U. Martinelli, and S. Y. Narayan, unpublished.Google Scholar
  17. 17.
    Joel A. Silver, David S. Bomse, and Alan C. Stanton, Appl. Optics 30 1505 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    D. E. Cooper, R. U. Martinelli, unpublised dataGoogle Scholar
  19. 19.
    Ramon U. Martinelli, R. J. Menna, D. E. Cooper, C. B. Carlisle, and H. Riris, SPIE Conf. Proceed., Vol. 2148, Los Angeles CA (1994).Google Scholar
  20. 20.
    Soichi Kobayashi, Yoshiisa Yamamoto, Minoru Ito, and Tatsuya Kimura, J. Quantum Electron. QE-18, 582 (1982).Google Scholar
  21. 21.
    Physics of Semiconductor Laser Devices, G. H. B. Thompson, Wiley (1980), p. 526.Google Scholar
  22. 22.
    N. K Dutta, A. B. Piccirilli, T. Cella and R. L. Brown, Appl. Phys. Lett. 48, 1501 (1986).ADSCrossRefGoogle Scholar
  23. 23.
    Hartmut Hillmer, S. Hansmann, Herbert Burkhard, Herbert, Walter, Alois Krost, and Dieter Bimberg, J. Quantum Electron. 30, 2251 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    Soichi Kobayahi, Yoshihisa Yamamoto, Minoru Ito, and Tatsuya Kimura, J. Quantum Electron. QE-18, 585 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Pam York
    • 1
  • Ray Martinelli
    • 1
  • Ray Menna
    • 1
  • Dave Cooper
    • 2
  • Harris Riris
    • 2
  • Clint Carlise
    • 2
  1. 1.David Sarnoff Research CenterPrincetonUSA
  2. 2.SRI InternationalMenlo ParkUSA

Personalised recommendations