Skip to main content

Surfactant-Activated Electrorheological Suspensions

  • Chapter
Book cover Progress in Electrorheology

Abstract

Applications of the electrorheological (ER) response are limited by a lack of effective fluids. Surfactants may be used to tailor ER suspension properties. We report investigations of the influence of nonionic surfactants on the field-induced dynamic yield stress of various alumina suspensions. We explore the dependence of the yield stress on surfactant type and concentration, particle type, water content, and electric field strength and frequency. Suspension dielectric properties are also investigated. Experimental results at small surfactant concentrations are qualitatively reproduced by a simple model based on Maxwell-Wagner polarization of the disperse phase. This suggests that surfactants act primarily to increase particle conductivity, and hence polarizability, leading ultimately to an increased yield stress. Possible explanations are proposed for deviations from this model at large surfactant concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. M. Winslow, Induced fibration of suspensions, J. Appl. Phys., 20:1137 (1949).

    Article  CAS  Google Scholar 

  2. Z. P. Shulman, R. G. Gorodkin, E. V. Korobko, and V. K. Gleb, The electrorheological effect and its possible uses, J. Non-Newt. Fluid Mech., 8:29 (1981).

    Article  Google Scholar 

  3. K. D. Weiss and J. D. Carlson, Material aspects of electrorheological systems, J. Intell. Sys. and Struct., 4:13 (1993).

    Article  Google Scholar 

  4. D. L. Hartsock, R. F. Novak, and G. J. Chaundry, ER fluid requirements for automotive devices, J. Rheol., 35:1305 (1991).

    Article  Google Scholar 

  5. Y. F. Deinega and G. V. Vinogradov, Electric fields in the rheological disperse system, Rheol Acta, 23:636 (1984).

    Article  CAS  Google Scholar 

  6. H. Block and J. P. Kelly, Electro-rheology, J. Phys. D: Appl. Phys., 21:1661 (1988).

    Article  CAS  Google Scholar 

  7. A. P. Gast and C. F. Zukoski, Electrorheological fluids as colloidal suspensions, Adv. Coll. Int. Sci., 30:153 (1989).

    Article  CAS  Google Scholar 

  8. T. C. Jordan and M. T. Shaw, Electrorheology, IEEE Trans. Elect. Insul., 24:849 (1989).

    Article  CAS  Google Scholar 

  9. G. G. Petrzhik, O. A. Chertkova, and A. A. Trapeznikov, Electrorheological effect in nonaqueous dispersions of various compositions in relation to the electric field parameters, Dokl. Akad. Nauk SSSR, 253:73 (1980).

    Google Scholar 

  10. A. A. Trapeznikov, G. G. Petrzhik, and O. A. Chertkova, Electrorheological properties of nonaqueous dispersions of titanium dioxide and silicone dioxide in relation to concentration and moisture content of filler, Koll. Zhurn., 43:83 (1981).

    Google Scholar 

  11. O. A. Chertkova, G. G. Petrzhik, and A. A. Trapeznikov, Influence of nature of surfactant on the electrorheological effect in nonaqueous dispersions, Koll. Zhurn., 44:83 (1982).

    CAS  Google Scholar 

  12. H. Uejima, Dielectric mechanism and rheological properties of electro-fluids, Jay. J. Appl Phys., 11:319 (1972).

    Article  CAS  Google Scholar 

  13. N. Sugimoto, Winslow effect in ionic exchange resin dispersion, Bull. JSME, 20:1476 (1977).

    Article  CAS  Google Scholar 

  14. D.J. Klingenberg and C.F. Zukoski, Studies on the steady-shear behavior of electrorheological suspensions, Langmuir, 6:15 (1990).

    Article  CAS  Google Scholar 

  15. D. J. Klingenberg, Frank van Swol, and C. F. Zukoski, Dynamic simulation of electrorheological suspensions, J. Chem. Phys., 91:7888 (1989).

    Article  CAS  Google Scholar 

  16. D. J. Klingenberg, Frank van Swol. and C. F. Zukoski, The small shear rate response of electrorheological suspensions. I. Simulation in the point-dipole limit, J. Chem. Phys., 94:6160 (1991).

    Article  CAS  Google Scholar 

  17. D. J. Klingenberg, Frank van Swol. and C. F. Zukoski, The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit, J. Chem. Phys., 94:6170 (1991).

    Article  CAS  Google Scholar 

  18. P. M. Adriani and A. P. Gast, A microscopic model of electrorheology, Phys. Fluids, 31:2757 (1988).

    Article  CAS  Google Scholar 

  19. H. A. Pohl, “Dielectrophoresis,” Cambridge University Press, Cambridge (1978).

    Google Scholar 

  20. S. S. Dukhin, Dielectric properties of disperse systems, J. Surf. Coll. Sci., 3:83 (1970).

    Google Scholar 

  21. R. T. Bonnecaze and J. F. Brady, Yield stresses in electrorheological fluids, J. Rheol., 36:73 (1992).

    Article  CAS  Google Scholar 

  22. R. J. Hunter, “Foundations of Colloid Science,” Vol. 1, Oxford University Press, Oxford (1989).

    Google Scholar 

  23. Y. D. Kim and D. J. Klingenberg, Surfactant-activated ER suspensions, in: “Electrorheological Fluids,” R. Tao and G. D. Ray, World Scientific Pub., New Jersey (1994).

    Google Scholar 

  24. J. D. Jackson, “Classical Electrodynamics,” 2nd ed., John Wiley and Sons Inc., New York (1975).

    Google Scholar 

  25. M. J. Rosen, “Surfactants and Interfacial Phenomena,” 2nd. ed., Wiley, New York (1989).

    Google Scholar 

  26. B.-Y. Zhu and T. Gu, Surfactant adsorption at solid-liquid interface, Adv. Coll. Int. Sci., 37:1 (1991).

    Article  CAS  Google Scholar 

  27. C. C. Nunn, R. S. Schecter, and W. H. Wade, Visual evidence regarding the nature of hemimicelles through surface solubilization of pinacyanal chloride, Langmuir, 1:251 (1985).

    Article  Google Scholar 

  28. C. Brosseau, Electrical conduction in impregnants for all-film power capacitors, J. Appl. Phys., 70(10):5544 (1991).

    Article  CAS  Google Scholar 

  29. Z. Randriamala, A. Denat, J. P. Gosse, and B. Gosse, Field-enhanced dissociation, the validity of Onsagar’s theory in surfactant solutions, IEEE Trans. Elect. Insul., 1:167 (1985).

    Article  Google Scholar 

  30. N. Felici, High-field conduction in dielectric liquids revisited, IEEE Trans. Elect. Insul., 1:233 (1985).

    Article  Google Scholar 

  31. D. Atten, J.-N. Foulc and N. Felici, A conduction model of electrorheological effect, in: “Electrorheological Fluids,” R. Tao and G. D. Ray, World Scientific Pub., New Jersey (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kim, Y.D., Klingenberg, D.J. (1995). Surfactant-Activated Electrorheological Suspensions. In: Havelka, K.O., Filisko, F.E. (eds) Progress in Electrorheology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1036-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1036-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1038-7

  • Online ISBN: 978-1-4899-1036-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics