Skip to main content

Protein Docking in the Absence of Detailed Molecular Structures

  • Chapter

Abstract

The design of new computational procedures to predict molecular complexes is a fast developing area stimulated by the growing demands of researchers working in various fields of molecular biology and looking for more powerful tools for their investigations. The problem for molecular recognition (docking) approaches may be shortly formulated as following: how to match two molecules with known 3D structures in order to predict the configuration of their complex? In the general case, no additional prior knowledge on binding sites is assumed to be available.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kuntz, I.D., Meng, E.C., and Shoichet, B.K., 1994, Structure-based molecular design, Acc. Chem. Res. 27: 117–123.

    Article  CAS  Google Scholar 

  2. Kollman, P.A., 1994, Theory of macromolecule-ligand interactions, Curr. Opin. Struct. Biol. 4: 240–245.

    Article  CAS  Google Scholar 

  3. Blaney, J.M., and Dixon, J.S., 1993, A good ligand is hard to find: automated docking methods, Perspec. Drug Disc. Des. 1: 301–319.

    Article  CAS  Google Scholar 

  4. Cherfils, J., and Janin, J., 1993, Protein docking algorithms: simulating molecular recognition, Curr. Opin. Struct. Biol. 3: 265–269.

    Article  CAS  Google Scholar 

  5. Goodford, P.J., 1985, A computational procedure for determining energetically favorable binding sites on biologically important macromolecules, J. Med. Chem. 28: 849–857.

    Article  PubMed  CAS  Google Scholar 

  6. Warwicker, J., 1989, Investigating protein-protein interaction surfaces using a reduced stereochemical and electrostatic model, J. Mol. Biol. 206: 381–395.

    Article  PubMed  CAS  Google Scholar 

  7. Goodsell, D.S., and Olson, A.J., 1990, Automated docking of substrates to proteins by simulated annealing, Proteins 8: 195–202.

    Article  PubMed  CAS  Google Scholar 

  8. Yue, S.-Y., 1990, Distance-constrained molecular docking by simulated annealing, Protein Engng. 4: 177–184.

    Article  CAS  Google Scholar 

  9. Caflisch, A., Niederer, P., and Anliker, M., 1992, Monte Carlo docking of oligopeptides to proteins, Pmteins 13: 223–230.

    Article  CAS  Google Scholar 

  10. Hart, T.N., and Read, R.J., 1992, A multiple-start Monte Carlo docking method, Proteins 13: 206–222.

    Article  PubMed  CAS  Google Scholar 

  11. Kuntz, I.D., Blaney, J.M., Oatley, S.J., Langridge, R., and Ferrin, T.E., 1982, A geometric approach to macromolecule-ligand interactions, J. Mol. Biol. 161: 269–288.

    Article  PubMed  CAS  Google Scholar 

  12. Connolly, M.L., 1986, Shape complementarity at the hemoglobin alphal-betal subunit interface, Biopolymers 25: 1229–1247.

    Article  PubMed  CAS  Google Scholar 

  13. DesJarlais, R.L., Sheridan, R.P., Seibel, G.L., Dixon, J.S., Kuntz, I.D., and Venkataraghavan, R., 1988, Using shape complementarity as an initial screen in designing ligands for a receptor binding site of known three-dimensional structure, J. Med. Chem. 31: 722–729.

    Article  PubMed  CAS  Google Scholar 

  14. Jiang, F., and Kim, S.H., 1991, “Soft docking”: matching of molecular surface cubes, J. Mol. Biol. 219: 79–102.

    Google Scholar 

  15. Nord, R., Fischer, D., Wolfson, H.J., and Nussinov, R., 1994, Molecular surface recognition by a computer vision-based technique, Protein Engng. 7: 39–46.

    Article  Google Scholar 

  16. Shoichet, B.K., and Kuntz, I.D., 1991, Protein docking and complementarity, J. Mol. Biol. 221: 327–346.

    Article  PubMed  CAS  Google Scholar 

  17. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., and Vakser, I.A., 1992, Molecular surface recognition: determination of of geometric fit between proteins and their ligands by correlation techniques, Proc. Natl. Acad. Sci. U.S.A. 89: 2195–2199.

    Article  PubMed  CAS  Google Scholar 

  18. Helmer-Citterich, M., and Tramontano, A., 1994, PUZZLE: a new method for automated protein docking based on surface shape complementarity, J. Mol. Biol. 235: 1021–1031.

    Article  PubMed  CAS  Google Scholar 

  19. Ho, C.M.W., and Marshall, G.R., 1993, SPLICE: a program to assemble partial query solutions from three-dimensional database searches into novel ligands, J. Comput. Aided Mol. Des. 7: 623–647.

    Article  CAS  Google Scholar 

  20. Shoichet, B.K., and Kuntz, I.D., 1993, Matching chemistry and shape in molecular docking, Protein Engng. 6: 723–732.

    Article  CAS  Google Scholar 

  21. Vakser, I.A., and Aflalo, C., Hydrophobic docking: a proposed enhancement to molecular recognition techniques, Proteins,in press.

    Google Scholar 

  22. Wodak, S.J., and Janin, J., 1978, Computer analysis of protein-protein interaction, J. Mol. Biol. 124: 323–342.

    Article  PubMed  CAS  Google Scholar 

  23. Janin, J., and Chothia, C., 1990, The structure of protein-protein recognition sites, J. Biol. Chem. 265: 16027–16030.

    PubMed  CAS  Google Scholar 

  24. Marshall, G.R., 1992, 3D structure of peptide-protein complexes: implications for recognition, Curr. Opin. Struct. Biol. 2: 904–919.

    Google Scholar 

  25. Leach, A.R., 1994, Ligand docking to proteins with discrete side-chain flexibility, J. Mol. Biol. 235: 345–356.

    Article  PubMed  CAS  Google Scholar 

  26. Tello, D., Goldbaum, F.A., Mariuzza, R A, Ysern, X., Schwarz, F.P., and Poljak, R.J., 1993, Tree-dimensional structure and thermodynamics of antigen binding by anti-lysozyme antibodies, Biochem. Soc. Trans. 21: 943–946.

    PubMed  CAS  Google Scholar 

  27. Lawrence, M.C., and Colman, P.M., 1993, Shape complementarity at protein/protein interfaces, J. Mol. Biol. 234: 946–950.

    Article  PubMed  CAS  Google Scholar 

  28. Vakser, I.A., 1995, Protein docking for low-resolution structures, Protein Engng. 8: 371–377.

    Article  CAS  Google Scholar 

  29. Abola, E.E., Bernsein, F.C., Bryant, S.H., Koetzle, T.L., and Weng, J., 1987, Protein Databank, in: Crystallographic Databases–Information Content, Software Systems, Scientific Applications. Allen, F.H., Bergerhoff, G., and Sievers, R. eds., Data Commission of the International Union of Crystallography, Bonn, pp 107–132.

    Google Scholar 

  30. Fermi, G., Perutz, M.F., Shaanan, B., and Fourme, R., 1984, The crystal structure of human deoxyhaemoglobin at 1.74 A resolution, J. Mol. Biol. 175: 159–174.

    Article  PubMed  CAS  Google Scholar 

  31. Ladner, R.C., Heidner, E.G., and Perutz, M.F., 1977, The structure of horse methaemoglobin at 2.0 angstroms resolution, J. Mol. Biol. 114: 385–414.

    Article  PubMed  CAS  Google Scholar 

  32. Marquart, M., Walter, J., Deisenhofer, J., Bode, W., and Huber, R., 1983, The geometry of the reactive site and of the peptide groups in trypsin, trypsinogen and its complexes with inhibitors, Acta Crystallog., Sect. B 39: 480–490.

    Article  Google Scholar 

  33. Fujinaga, M., Sielecki, A.R., Read, R.J., Ardelt, W., Laskowski, M. Jr, and James, M.N.G., 1987, Crystal and molecular structures of the complex of aplpha-chymotrypsin with its inhibitor turkey ovomucoid third domain at 1.8 angstroms resolution, J. Mol. Biol. 195: 397–418.

    Article  PubMed  CAS  Google Scholar 

  34. McPhalen, C.A., and James, M.N.G., 1988, Structural comparison of two serine proteinase-protein inhibitor complexes: eglin-c-subtilisin Carlsberg and CI-2-subtilisin Novo, Biochemistry 27: 6582–6598.

    Article  PubMed  CAS  Google Scholar 

  35. Suguna, K., Bott, R.R., Padlan, E.A., Subramanian, E., Sheriff, S., Cohen, G.H., and Davies, D.R., 1987, Structure and refinement at 1.8 A resolution of the aspartic proteinase from Rhizopus chinensis, J. Mol. Biol. 196: 877–900.

    Article  PubMed  CAS  Google Scholar 

  36. Brick, P., Bhat, T.N., and Blow, D.M., 1989, Structure of tyrosyl-tRNA synthetase refined at 2.3 angstroms resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate, J. Mol. Biol. 208: 83–98.

    Article  PubMed  CAS  Google Scholar 

  37. Madden, D.R., Gorga, J.C., Strominger, J.L., and Wiley, D.C., 1992, The three-dimensional structure of HLA-B27 at 2.1 angstroms resolution suggests a general mechanism for tight peptide binding to MHC, Cell 70: 1035–1048.

    Article  PubMed  CAS  Google Scholar 

  38. Sheriff, S., Silverton, E.W., Padlan, E.A., Cohen, G.H., Smith-Gill, S.J., Finzel, B.C., and Davies, D.R., 1987, Three-dimensional structure of an antibody-antigen complex, Proc. Natl. Acad. Sci. U.S.A. 84: 8075–8079.

    Article  PubMed  CAS  Google Scholar 

  39. Rini, J.M., Stanfield, R.L., Stura, E.A., Salinas, P.A., Profy, A.T., and Wilson, I.A., 1993, Crystal structure of an HIV-1 neutralizing antibody 50.1 in complex with its V3 loop peptide antigen, Proc. Natl. Acad. Sci. U.S.A. 90: 6325–6329.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vakser, I.A., Nikiforovich, G.V. (1995). Protein Docking in the Absence of Detailed Molecular Structures. In: Atassi, M.Z., Appella, E. (eds) Methods in Protein Structure Analysis. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1031-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1031-8_46

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1033-2

  • Online ISBN: 978-1-4899-1031-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics