Skip to main content

Single-Trial Readiness Potentials and Fatigue

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

The authors propose that the cognitive processes related to internal motivation and volition (e.g., intention and preparation of a voluntary action), influenced by central fatigue, could be identified and characterized by cerebral readiness potentials (RP) using methods of chaotic dynamics. The boundaries of single-trial RP and its successive phases can be detected by tracking the data dynamics, and are represented by chaotically behaved short EEG transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barrett G, Shibasaki H & Neshige R (1986). Cortical potentials preceding voluntary movement: evidence for three periods of preparation in man. Electroencephalography and Clinical Neurophysiology 83, 327–339.

    Article  Google Scholar 

  • Broomhead DS & King GP (1986). Extracting qualitative dynamics from experimental data. Physica 20D, 217–236.

    Google Scholar 

  • Chaouloff F (1991). Cerebral monoamines and fatigue. In: Atlan G, Beliveau L, Bouissou P, (eds.), Muscle Fatigue. Biochemical and Physiological Aspects, pp. 234–240. Paris: Masson.

    Google Scholar 

  • Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE & Birbaumer N (1994). Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiological Reviews, 74, 1–47.

    PubMed  CAS  Google Scholar 

  • Farmer JD & Sidorowich JJ (1987). Predicting chaotic time series. Physical Review Letters 59, 845–848.

    Article  PubMed  Google Scholar 

  • Freude G, Ullsperger P & Pietschmann M (1987). Are self-paced repetitive fatiguing hand contractions accompanied by changes in movement-related brain potentials? In: Gantchev GN, Dimitrov B, Gatev P (eds.), Motor Control, pp. 99–103. New York: Plenum.

    Chapter  Google Scholar 

  • Grassberger P & Procaccia I (1983). Measuring the strangeness of strange attractors. Physica 9D, 189–208.

    Google Scholar 

  • Hashimoto S, Gemba H & Sasaki K (1980). Premovement slow cortical potentials and required muscle force in self-paced hand movements in the monkey. Brain Research 117, 415–423.

    Article  Google Scholar 

  • Kornhuber HH & Deecke L (1964). Hirnpotentialanderungen beim Menschen vor und nach Willkurbewegungen, dargestellt mit Magnetbundspeicherung und Ruckwartsanalyse. Pflügers Archiv 281, 52.

    Google Scholar 

  • Kristeva R, Cheyne D, Lang W, Lindinger G & Deecke L (1990). Movement-related potentials accompanying unilateral and bilateral finger movements with different inertial loads. Electroencephalography and Clinical Neurophysiology 75, 410–418.

    Article  PubMed  CAS  Google Scholar 

  • Libet B (1985). Unconscious cerebral initiative and the role of conscious will in voluntary action. Behavioral and Brain Sciences 8, 529–566.

    Article  Google Scholar 

  • Maton B (1991). Central nervous changes in fatigue induced by local work. In: Atlan G, Beliveau L, Bouissou P (eds.), Muscle Fatigue. Biochemical and Physiological Aspects, pp. 207–221. Paris: Masson.

    Google Scholar 

  • Molnar M & Skinner JJ (1992). Low-dimensional chaos in event-related brain potentials. International journal of Neuroscience 66, 263–276.

    PubMed  CAS  Google Scholar 

  • Nethery VM (1991). Central fatigue: the contribution of attentional focus. In: Atlan G, Beliveau L, Bouissou P (eds.), Muscle Fatigue. Biochemical and Physiological Aspects, pp. 243. Paris: Masson.

    Google Scholar 

  • Pfurtscheller G (1992). Event-related synchronization (ERS): an electrophysiological correlate of cortical areas at rest. Electroencephalography and Clinical Neurophysiology 83, 62–69.

    Article  PubMed  CAS  Google Scholar 

  • Popivanov D. (1992). Time series analysis of brain potentials preceding voluntary movements. Medical & Biological Engineering & Computing 30, 9–14.

    Article  CAS  Google Scholar 

  • Popivanov D, Dushanova J, Mineva A & Krekule I (1993). Identification of slow EEG-transients by using chaotic models. In: Rosenfalck A (ed.), Proceedings of the IMIA-IFMBE Working Conference on “Biosignal Interpretation ”, pp. 198-201. Aalborg, Denmark.

    Google Scholar 

  • Popivanov D, Dushanova J, Mineva A & Krekule I (1995). Single-trial readiness potentials: stochastic and chaotic dynamical behavior. In: Stuart DG, Gantchev GN, Gurfinkel VS, Wiesendanger M (eds.), Motor Control VII, pp. 00–00. Tucson, AZ: Motor Control Press.

    Google Scholar 

  • Saltzberg B, Burton WD & Skinner JE (1988). Filtering for chaos.In: Harris G, Walker C (eds.), Proceedings of the 10th Annual International Conference of the IEEE in Medicine & Biology Society, pp. 1072-1073. New Orleans, LA

    Google Scholar 

  • Smith LA (1992). Identification and prediction of low dimensional dynamics. Physica D58, 50–76.

    Google Scholar 

  • Sugihara G & May RM (1990). Nonlinear forecasting as a way of distinguishing chaos from measurement error in time series. Nature 344, 734–741.

    Article  PubMed  CAS  Google Scholar 

  • Takens F (1981). Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds.), Lecture Notes in Mathematics, vol. 898, pp. 366. Berlin: Springer.

    Google Scholar 

  • Tarkka IM & Hallett M (1990). Cortical topography of premotor potentials preceding self-paced, voluntary movement of dominant and non-dominant hands. Electroencephalography and Clinical Neurophysiology 75, 36–43.

    Article  PubMed  CAS  Google Scholar 

  • Vautard R & Ghil M (1989). Singular spectrum analysis in nonlinear dynamics with applications to paleoclimatic time series. Physica D35, 395–424.

    Google Scholar 

  • Vautard R, Yiou P & Ghil M (1992). Singular spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D58, 95–126.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Popivanov, D., Mineva, A., Dushanova, J. (1995). Single-Trial Readiness Potentials and Fatigue. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics