Skip to main content

Neuromuscular Frequency-Coding and Fatigue

  • Chapter
Fatigue

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 384))

Abstract

In daily life, muscle fatigue often becomes noticeable as an apparent decline in the efficiency of force production by central commands, making it necessary to increase drive (or “effort”) to produce a constant motor output. Such aspects of fatigue may be caused by changes in the way in which synaptic messages arriving at the motoneurons are translated into forces by the muscle fibers. Therefore, an understanding of these neuromuscular gradation mechanisms is essential for any analysis of motor fatigue. A brief general review is given of 1) how muscle fibers transduce motoneuronal discharge rates into force; 2) how synaptic currents are transduced into motoneuronal discharge rates; 3) how activity-dependent changes in the neuromuscular transduction mechanisms contribute to neuromuscular fatigue; and 4) how the matching between the transduction mechanisms of motoneurons and those of their muscle fibers may help to optimize neuromuscular gradation efficiency and decrease the severity of fatigue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bakels R & Kernell D (1993a). Matching between motoneurone and muscle unit properties in rat medial gastrocnemius. Journal of Physiology (London) 463, 307–324.

    CAS  Google Scholar 

  • Bakels R & Kemell D (1993b). “Average” but not “continuous” speed-match between motoneurons and muscle units of rat tibialis anterior. Journal of Neurophysiology, 70, 1300–1306.

    PubMed  CAS  Google Scholar 

  • Bakels R & Kernell D (1994). Threshold-spacing in motoneurone pools of rat and cat: possible relevance for manner of force gradation. Experimental Brain Research 102, 69–74.

    Article  CAS  Google Scholar 

  • Baldissera F, Campadelli P & Piccinelli L (1987). The dynamic response of cat gastrocnemius motor units investigated by ramp current injection into their motoneurones. Journal of Physiology (London) 387, 317–330.

    CAS  Google Scholar 

  • Bevan L, Laouris Y, Reinking RM & Stuart DG (1992). The effect of the stimulation pattern on the fatigue of single motor units in adult cats. Journal of Physiology (London) 449, 85–108.

    CAS  Google Scholar 

  • Bigland-Ritchie BR, Furbush FH, Gandevia SC & Thomas CK (1992a). Voluntary discharge frequencies of human motoneurons at different muscle lengths. Muscle & Nerve 15, 130–137.

    Article  CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ, Smith S & Woods JJ (1983a). Changes in motoneurone firing rates during sustained maximal voluntary contractions. Journal of Physiology (London) 340, 335–346.

    CAS  Google Scholar 

  • Bigland-Ritchie B, Johansson R, Lippold OCJ & Woods JJ (1983b). Contractile speed and EMG changes during fatigue of sustained maximal voluntary contractions. Journal of Neurophysiology 50, 313–324.

    PubMed  CAS  Google Scholar 

  • Bigland-Ritchie B, Thomas CK, Rice CL, Howarth JV & Woods JJ (1992b). Muscle temperature, contractile speed, and motoneuron firing rates during human voluntary contractions. Journal of Applied Physi-ology 73, 2457–2461.

    CAS  Google Scholar 

  • Binder MD, Heckman CJ & Powers RK (1993). How different afferent inputs control motoneuron discharge and the output of the motoneuron pool. Current Opinion in Neurobiology 3, 1028–1034.

    Article  PubMed  CAS  Google Scholar 

  • Binder-Macleod SA & Barker CB (1991). Use of a catchike property of human skeletal muscle to reduce fatigue. Muscle & Nerve 14, 850–857.

    Article  CAS  Google Scholar 

  • Binder-Macleod SA & Clamann HP (1989). Force output of cat motor units stimulated with trains of linearly varying frequency. Journal of Neurophysiology 61, 208–217.

    PubMed  CAS  Google Scholar 

  • Botterman BR, Iwamoto GA & Gonyea WJ (1986). Gradation of isometric tension by different activation rates in motor units of cat flexor carpi radialis muscle. Journal of Neurophysiology 56, 494–506.

    PubMed  CAS  Google Scholar 

  • Brownstone RM, Jordan LM, Kriellaars DJ, Noga BR & Shefchyk SJ (1992). On the regulation of repetitive firing in lumbar motoneurones during fictive locomotion in the cat. Experimental Brain Research 90, 441–455.

    Article  CAS  Google Scholar 

  • Buller AJ & Lewis DM (1965). The rate of tension development in isometric tetanic contractions of mammalian fast and slow skeletal muscle. Journal of Physiology (London) 176, 337–354.

    CAS  Google Scholar 

  • Burke RE, Rudomin P & Zajac FE (1976). The effect of activation history on tension production by individual muscle units. Brain Research 109, 515–529.

    Article  PubMed  CAS  Google Scholar 

  • Carp JS, Powers RK & Rymer WZ (1991). Alterations in motoneuron properties induced by acute dorsal spinal hemisection in the decerebrate cat. Experimental Brain Research 83, 539–548.

    Article  CAS  Google Scholar 

  • Cooper RG, Edwards RHT, Gibson H & Stokes MJ (1988). Human muscle fatigue: Frequency dependence of excitation and force generation. Journal of Physiology (London) 397, 585–599.

    CAS  Google Scholar 

  • Cooper S & Eccles JC (1930). The isometric responses of mammalian muscles. Journal of Physiology (London) 69, 377–385.

    CAS  Google Scholar 

  • Desmedt JE & Godaux E (1977). Ballistic contractions in man: characteristic recruitment pattern of single motor units of the tibialis anterior muscle. Journal of Physiology (London) 264, 673–693.

    CAS  Google Scholar 

  • Edwards RHT, Hill DK, Jones DA & Merton PA (1977). Fatigue of long duration in human skeletal muscle after exercise. Journal of Physiology (London) 272, 769–778.

    CAS  Google Scholar 

  • Enoka RM & Stuart DG (1992). Neurobiology of muscle fatigue. Journal of Applied Physiology 72, 1631–1648.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner PF & Kernell D (1990). The “fastness” of rat motoneurones: time-course of afterhyperpolarization in relation to axonal conduction velocity and muscle unit contractile speed. Pflügers Archiv 415, 762–766.

    Article  PubMed  CAS  Google Scholar 

  • Grimby L, Hannerz J & Hedman B (1979). Contraction time and voluntary discharge properties of individual short toe extensor motor units in man. Journal of Physiology (London) 289, 191–201.

    CAS  Google Scholar 

  • Heckman CJ, Weytjens JLF & Loeb GE (1992). Effect of velocity and mechanical history on the forces of motor units in the cat medial gastrocnemius muscle. Journal of Neurophysiology 68, 1503–1515.

    PubMed  CAS  Google Scholar 

  • Henneman E & Mendell LM (1981). Functional organization of motoneuron pool and its inputs. In: Brookhart JM, Mountcastle VB (sec. eds.), Brooks VB (vol. ed.), Handbook of Physiology, sec. 1, vol. II, pt 1, The Nervous System: Motor Control., pp. 423–507. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Jami L, Murthy KSK, Petit J & Zytnicki D (1983). After-effects of repetitive stimulation at low frequency on fast-contracting motor units of cat muscle. Journal of Physiology (London) 340, 129–143.

    CAS  Google Scholar 

  • Jones DA, Bigland-Ritchie B & Edwards RHT (1979). Excitation frequency and muscle fatigue: Mechanical responses during voluntary and stimulated contractions. Experimental Neurology 64, 401–413.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D (1965a). High-frequency repetitive firing of cat lumbosacral motoneurones stimulated by long-lasting injected currents. Acta Physiologica Scandinavica 65, 74–86.

    Article  Google Scholar 

  • Kernell D (1965b). The limits of firing frequency in cat lumbosacral motoneurones possessing different time course of afterhyperpolarization. Acta Physiologica Scandinavica 65, 87–100.

    Article  Google Scholar 

  • Kernell D (1992). Organized variability in the neuromuscular system: A survey of task-related adaptations. Archives Italiennes de Biologie 130, 19–66.

    PubMed  CAS  Google Scholar 

  • Kernell D, Ducati A & Sjöholm H (1975). Properties of motor units in the first deep lumbrical muscle of the cat’s foot. Brain Research 98, 37–55.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D, Eerbeek O & Verhey BA (1983). Relation between isometric force and stimulus rate in cat’s hindlimb motor units of different twitch contraction time. Experimental Brain Research 50, 220–227.

    CAS  Google Scholar 

  • Kernell D & Hultborn H (1990). Synaptic effects on recruitment gain: a mechanism of importance for the input-output relations of motoneurone pools? Brain Research 507, 176–179.

    Article  PubMed  CAS  Google Scholar 

  • Kernell D & Monster AW (1982a). Time course and properties of late adaptation in spinal motoneurones in the cat. Experimental Brain Research 46, 191–196.

    CAS  Google Scholar 

  • Kernell D & Monster AW (1982b). Motoneurone properties and motor fatigue. An intracellular study of gastrocnemius motoneurones of the cat. Experimental Brain Research 46, 197–204.

    CAS  Google Scholar 

  • Macefield VG, Gandevia SC, Bigland-Ritchie B, Gorman RB & Burke D (1993). The firing rates of human motoneurones voluntarily activated in the absence of muscle afferent feedback. Journal of Physiology (London) 471, 429–443.

    CAS  Google Scholar 

  • Marsden CD, Meadows JC & Merton PA (1983). “Muscular wisdom” that minimizes fatigue during prolonged effort in man: peak rates of motoneurone discharge and slowing of discharge during fatigue. In: Desmedt J.E. (ed.), Motor Control Mechanisms in Health and Disease, pp. 169–211. New York: Raven Press.

    Google Scholar 

  • McCloskey DI (1981). Corollary discharges: motor commands and perception. In: Brookhart JM, Mountcastle VB (sec. eds.), Brooks VB (vol. ed.), Handbook of Physiology, sec. 1, vol. II, pt 2, The Nervous System: Motor Control, pp. 1415-1447. Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Nagesser AS, Van der Laarse WJ & Elzinga G (1992). Metabolic changes with fatigue in different types of single muscle fibres of Xenopus Laevis. Journal of Physiology (London) 448, 511–523.

    CAS  Google Scholar 

  • Parmiggiani F & Stein RB (1981). Nonlinear summation of contractions in cat muscles. II. Later facilitation and stiffness changes. Journal of General Physiology 78, 295–311.

    Article  PubMed  CAS  Google Scholar 

  • Powers RK & Binder MD (1991). Effects of low-frequency stimulation on the tension-frequency relations of fast-twitch motor units in the cat. Journal of Neurophysiology 66, 905–918.

    PubMed  CAS  Google Scholar 

  • Rack PMH & Westbury DR (1969). The effects of length and stimulus rate on tension in the isometric cat soleus muscle. Journal of Physiology (London) 204, 443–460.

    CAS  Google Scholar 

  • Ranatunga KW (1982). Temperature-dependence of shortening velocity and rate of isometric tension development in rat skeletal muscle. Journal of Physiology (London) 329, 465–483.

    CAS  Google Scholar 

  • Sargeant AJ (1987). Effect of muscle temperature on leg extension force and short-term power output in humans. European Journal of Applied Physiology 56, 693–698.

    Article  CAS  Google Scholar 

  • Spielmann JM, Laouris Y, Nordstrom MA, Robinson GA, Reinking RM & Stuart DG (1993). Adaptation of cat motoneurons to sustained and intermittent extracellular activation. Journal of Physiology (Lon-don) 464, 75–120.

    CAS  Google Scholar 

  • Stephens JA, Reinking RM & Stuart DG (1975). The motor units of cat medial gastrocnemius: Electrical and mechanical properties as a function of muscle length. Journal of Morphology 146, 495–512.

    Article  PubMed  CAS  Google Scholar 

  • Tax AAM, Van der Gon JJD, Gielen CCAM & Van den Tempel CMM (1989). Differences in the activation of m. biceps brachii in the control of slow isotonic movements and isometric contractions. Experimental Brain Research 76, 55–63.

    Article  CAS  Google Scholar 

  • Thomas CK, Bigland-Ritchie B & JohanssonRS (1991). Force-frequency relationships of human thenar motor units. Journal of Neurophysiology 65, 1509–1516.

    PubMed  CAS  Google Scholar 

  • van der Linden DW, Kukulka CG & Soderberg GL (1991). The effect of muscle length on motor unit discharge characteristics in human tibialis anterior muscle. Experimental Brain Research 84, 210–218.

    Article  Google Scholar 

  • Woods JJ, Furbush F & Bigland-Ritchie B (1987). Evidence for a fatigue-induced reflex inhibition of motoneuron firing rates. Journal of Neurophysiology 58, 125–137.

    PubMed  CAS  Google Scholar 

  • Zengel JE, Reid SA, Sypert GW & Munson JB (1985). Membrane electrical properties and prediction of motor-unit type of medial gastrocnemius motoneurons in the cat. Journal of Neurophysiology 53, 1323–1344.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kernell, D. (1995). Neuromuscular Frequency-Coding and Fatigue. In: Gandevia, S.C., Enoka, R.M., McComas, A.J., Stuart, D.G., Thomas, C.K., Pierce, P.A. (eds) Fatigue. Advances in Experimental Medicine and Biology, vol 384. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-1016-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-1016-5_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-1018-9

  • Online ISBN: 978-1-4899-1016-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics