Skip to main content

Accessory Molecules that Influence Signaling Through B Lymphocyte Antigen Receptors

  • Chapter
  • 109 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 365))

Abstract

The B lymphocyte antigen receptor complex, commonly called the B cell receptor (BCR) complex, consists of surface immunoglobulin (sIg) and heterodimers of the Igα (CD79a, mb1) and Igβ (CD79b, B29) phosphoglycoproteins. Recent reviews detail pertinent findings on the BCR complex.1 The structure of the BCR complex and some cell-surface molecules that influence signaling via the BCR are shown in Figure 1. The clonotypic Ig receptor has only a very short cytoplasmic tail and therefore must rely on the invariant members of the BCR complex to transmit signals to the cytosol after receptor crosslinking. Igα/Igβ associate with sIgM and sIgD and are both necessary and sufficient for the expression of sIg. This heterodimer is analogous to the TCR CD3ε/δ or CD3ε/γ heterodimers,2 which, like Igα/Igβ, (1) contain subunits with a single extracellular Ig-like domain; (2) are phosphorylated on tyrosine (CD3ε and CD3ζ) after crosslinking of antigen receptors; and (3) contain within their cytoplasmic tail a single antigen receptor homology 1 (ARH1) motif, D/E-X7-D/E-X2-Y-X2-L-X7-Y-X2-L/I (X = any amino acid). Regions within the transmembrane domain of sIgM are required for the release of [Ca2+]i or internalization of bound antigen.3 Mutations within the transmembrane domain of sIgM that inhibit the activation of new protein tyrosine phosphorylation (PTP) and release of [Ca2+]i also uncouple sIgM from Igα/Igβ.4 However, even though such a mutant sIgM does not associate with Igα/Igβ, when crosslinked it still induces some new PTP.4 Both Sanchez et al.4 and Kim et al.5 reported that surface chimeric fusion proteins expressing the cytoplasmic tails of Igα vs. Igβ differ in their ability to transmit signals: the Igα but not the Igβ tail can induce new PTP, results consistent with studies suggesting that Igα and not Igβ strongly associates with the protein tyrosine kinase (PTK) p53/56Lyn (Lyn).6 Matsuuchi et al.7 found that sIgM expression could be reconstituted in a pituitary cell line with Igα/Igβ coexpression, but that Igα/Igβ were not sufficient to reconstitute a complete signal through sIgM. Thus, IgM interaction with Igα/Igβ is critical for signaling but other factors may also be required.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Moller, G. Ed. 1993. The B-cell antigen receptor complex. Immunol. Rev. vol. 132. Munksgaard, Copenhagen. 206pp.

    Google Scholar 

  2. Cambier, J. C. 1992. Signal transduction by T-and B-cell antigen receptors: converging structures and concepts. Cur. Opin. Immunol. 4:257.

    Article  CAS  Google Scholar 

  3. Shaw, A. C., Mitchell, R. N., Weaver, Y. K., Campos-Torres, J., Abbas, A. K., and Leder, P. 1992. Mutations of immunoglobulin transmembrabne and cytoplasmic domains: effect on intracellular signalling and antigen presentation. Cell 63:381.

    Article  Google Scholar 

  4. Sanchez, M., Misulovin, Z., Burkhardt, A. L., et al. 1993. Signal transduction by immunoglobulin is mediated through Igα and Igβ. J. Exp. Med. 178:1049.

    Article  PubMed  CAS  Google Scholar 

  5. Kim, K.M., Alber, G., Weiser, P., and Reth, M. 1993. Signaling function of the B-cell antigen receptors. Immunol. Rev. 132:125.

    Article  PubMed  CAS  Google Scholar 

  6. Clark, M. R., Campbell, K. S., Kazlauskas, A., et al., 1992. The B cell antigen receptor complex: association of Ig-alpha and Ig-beta with distinct cytoplasmic effectors. Science 258:123.

    Article  PubMed  CAS  Google Scholar 

  7. Matsuuchi, L., Gold, M. R., Travis, A., et al. 1992. The membrane IgM-associated proteins MB-1 and Ig-β are sufficient to promote surface expression of a partially functional B-cell antigen receptor in a non lymphoid cell line. Proc. Nat. Acad. Sci. USA 89:3404.

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto, T., Yamanashi, Y., and Toyoshima, K. 1993. Association of src-family kinase Lyn with B-cell antigen receptor. Immunol. Rev. 132:187.

    Article  PubMed  CAS  Google Scholar 

  9. Songyang, Z., Shoelson, S. E., Chaudhuri, M., et al. 1993. SH2 domains recognize specific phosphopeptide sequences. Cell 72:767.

    Article  PubMed  CAS  Google Scholar 

  10. Cambier, J. C., Bedzyk, W., Campbell, K., et al. 1993. The B-cell antigen receptor: structure and function of primary, secondary, tertiary and quaternary components. Immunol. Rev. 132:85.

    Article  PubMed  CAS  Google Scholar 

  11. Taniguchi, T., Kobayashi, T., Kondo, J., et al. 1991. Molecular cloning of a porcine gene Syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J. Biol. Chem. 266:15790.

    PubMed  CAS  Google Scholar 

  12. Yamada, T., Taniguchi, T., Yang, C, Yasue, S., Saito, H., and Yamamura, H. 1993. Association with B-cell-antigen receptor with protein-tyrosine kinase p72syk and activation by engagement of membrane IgM. Eur. J. Biochem. 213:455.

    Article  PubMed  CAS  Google Scholar 

  13. Burg, D. L., Harrison, M. L., and Geahlen, R. L. 1993. Cell cycle-specific activation of the PTK72 protein-tyrosine kinase in B lymphocytes. J. Biol. Chem. 268:2304.

    PubMed  CAS  Google Scholar 

  14. Hutchcroft, J. E., Harrison, M. L., and Geahlen, R. L. 1991. B lymphocyte activation is accompanied by phosphorylation of a 72-kDa protein-tyrosine kinase. J. Biol. Chem. 266:14846.

    PubMed  CAS  Google Scholar 

  15. Hutchcroft, J. E., Harrison, M. L., and Geahlen, R. L. 1992a. Association of the 72-kDa proteintyrosine kinase PTK72 with the B cell antigen receptor. J. Biol. Chem. 267:8613.

    PubMed  CAS  Google Scholar 

  16. Leprince, C., Draves, K. E., Geahlen, R. L., Ledbetter, J. A., and Clark, E. A. 1993. CD22 associates with the human surface IgM-B cell antigen receptor complex. Proc. Nat. Acad. Sci. USA 90:3236.

    Article  PubMed  CAS  Google Scholar 

  17. Law, C-L., Sidorenko, S. P., Chandran, K. A., Draves, K. E., Chan, A. C., Weiss, A., Edelhoff, S., Disteche, C. M., and Clark, E. A. 1994a. Molecular cloning of human Syk, a cell protein tyrosine kinase associated with the slgM/B cell receptor complex. J. Biol. Chem., in press.

    Google Scholar 

  18. Kolanus, W., Romeo, C., and B. Seed. 1993. T cell activation by clustered tyrosine kinases. Cell 74:171.

    Article  PubMed  CAS  Google Scholar 

  19. Mayer, B. and Baltimore, D. 1993. Signaling through SH3 and SH2 domains. Trends Cell Biol. 3:8.

    Article  PubMed  CAS  Google Scholar 

  20. Chan, A. C., Iwashima, M., Turck, C. W., and Weiss, A. 1992. ZAP-70: a 70 kd protein-tyrosine kinase that associates with the TCR ζ chain. Cell 71:649.

    Article  PubMed  CAS  Google Scholar 

  21. Wange, R. L., Malek, S. N., Desiderio, S., and Samelson, L. E. 1993. Tandem SH2 domains of ZAP-70 bind to T cell antigen receptor ζ and CD3ε from activated Jurkat T cells. J. Biol. Chem. 268:19797.

    PubMed  CAS  Google Scholar 

  22. Weiss, A. 1993. T cell antigen receptor signal transduction: A tale of tails and cytoplasmic protein-tyrosine kinases. Cell 73:209.

    Article  PubMed  CAS  Google Scholar 

  23. Cooper, J. A. and Howell, B. 1993. The when and how of Src regulation. Cell 73:1051.

    Article  PubMed  CAS  Google Scholar 

  24. Law, C-L., Chandran, K., Sidorenko, S. P., Draves, K. E., and Clark, E. A. 1994b. Both SH2 domains of the spleen tyrosine kinase, Syk, are required for efficient binding to components of the B cell antigen receptor complex. Submitted.

    Google Scholar 

  25. Hutchcroft, J. E., Geahlen, R. L., Deanin, G. G., and Oliver, J. M. 1992b. Fc epsilon RI-mediated tyrosine phosphorylation and activation of the 72-kDa protein-tyrosine kinase, PTK72, in RBL-2H3 rat tumor mast cells. Proc. Nat. Acad. Sci. USA 89:9107.

    Article  PubMed  CAS  Google Scholar 

  26. Sidorenko, S. P., Law, C-L., Chandran, K. A., and Clark, E. A. 1994. The human spleen tyrosine kinase, Syk, associates with p53/56Lyn and a 120 kDa phosphoprotein, pp 120. Submitted.

    Google Scholar 

  27. Amigorena, S., Bonnerot, C., Drake, J. R., et al. 1992. Cytoplasmic domain heterogeneity and functions of IgG Fc receptors in B lymphocytes. Science 256:1808.

    Article  PubMed  CAS  Google Scholar 

  28. Pesando, J. M., Bouchard, L. S., and McMaster, B. E. 1989. CD19 is functionally and physically associated with surface immunoglobulin. J. Exp. Med. 170:2159.

    Article  PubMed  CAS  Google Scholar 

  29. Justement, L. B., Campbell, K. S., Chien, N. C., and Cambier, J. C. 1991. Regulation of B cell antigen receptor signal transduction and phosphorylation by CD45. Science 252:1839.

    Article  PubMed  CAS  Google Scholar 

  30. Barrett, T. B., Shu, G. L., Draves, K. E., Pezzutto, A., and Clark, E. A. 1990. Signaling through CD 19, Fc receptors or transforming growth factor-β: each inhibits the activation of resting human B cells differently. Eur. J. Immunol. 20:1053.

    Article  PubMed  CAS  Google Scholar 

  31. Carter, R. H. and Fearon, D. T. 1992. CD19: Lowering the threshold for antigen receptor stimulation of B lymphocytes. Science 256:105.

    Article  PubMed  CAS  Google Scholar 

  32. Tuveson, D. A., Carter, R. H., Soltoff, S. P., and Fearon, D. T. 1993. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3 kinase. Science 260:986.

    Article  PubMed  CAS  Google Scholar 

  33. Chalupny, N. J., Kanner, S. B., Schieven, G. L., et al. 1993. Tyrosine phosphorylation of CD19 in pre-B-cells and mature B-cells. EMBO J. 12:2691.

    PubMed  CAS  Google Scholar 

  34. Kishihara, K., Penninger, J., Wallace, V. A., et al. 1993. Normal B lymphocyte development but impaired T cell maturation in CD45-exon6 protein tyrosine phosphatase-deficient mice. Cell 74:143.

    Article  PubMed  CAS  Google Scholar 

  35. Clark, E. A. 1993. CD22, a B-cell-specific receptor, mediates adhesion and signal transduction. J. Immunol. 150:4715.

    PubMed  CAS  Google Scholar 

  36. Stamenkovic, I., Sgroi, D., Aruffo, A., Sy, M. S., and Anderson, T. 1991. The B lymphocyte adhesion molecule CD22 interacts with leukocyte common antigen CD45RO on T cells and alpha 2-6 sialyltransferase, CD75, on B cells. Cell 66:1133.

    Article  PubMed  CAS  Google Scholar 

  37. Wilson, G. L., Fox, C. H., Fauci, A. S., and Kehrl, J. H. 1991. cDNA cloning of the B cell membrane protein CD22: a mediator of B-B cell interactions. J. Exp. Med. 173:137.

    Article  PubMed  CAS  Google Scholar 

  38. Torres, R. M., Law, C-L., Santos-Argumedo, L., et al. 1992. Identification and characterization of the murine homologue of CD22, a lymphocyte restricted adhesion molecule. J. Immunol. 149:2641.

    PubMed  CAS  Google Scholar 

  39. Aruffo, A., Kanner, S. B., Sgroi, D., Ledbetter, J. A., and Stamenkovic, I. 1992. CD22-mediated stimulation of T cells regulates T-cell receptor/CD3-induced signaling. Proc. Nat. Acad. Sci. USA 89:10242.

    Article  PubMed  CAS  Google Scholar 

  40. Sgroi, D., Varki, A., Braesch-Anderson, S., and Stamenkovic, I. 1993. CD22, a B cell-specific immunoglobulin superfamily member is a sialic acid-binding lectin, J. Biol. Chem. 268:7011.

    PubMed  CAS  Google Scholar 

  41. Powell, L. D., Sgroi, D., Sjoberg, E. R., Stamenkovic, I., and Varki, A. 1993. Natural ligands of the B cell adhesion molecule CD22B carry N-linked oligosaccharides with a2,6 linked sialic acids that are required for recognition. J. Biol. Chem. 268:7019.

    PubMed  CAS  Google Scholar 

  42. van Noesel, C. J., Brouns, G. S., van Schijndel, G. M., Bende, R. J., Mason, D. Y., Borst, J., and van Lier, R. A. 1992. Comparison of human B cell antigen receptor complexes: membrane-expressed forms of immunoglobulin (Ig)M, IgD, and IgG are associated with structurally related heterodimers. J. Exp. Med. 175:1511.

    Article  PubMed  Google Scholar 

  43. Peaker, C. J. G. and Neuberger, M. S. 1993. Association of CD22 with the B cell antigen receptor. Eur. J. Immunol. 23:1358.

    Article  PubMed  CAS  Google Scholar 

  44. Pezzutto, A., Rabinovitch, P. S., Dörken, B., Moldenhauer, G., and Clark, E. A 1988. Role of CD22 human B cell surface antigen in the regulation of intracellular free calcium responses induced by anti-immunoglobulin. J. Immunol. 140:1791.

    PubMed  CAS  Google Scholar 

  45. Schulte, R. J., Campbell, M.-A., Fischer, W. H., and Sefton, B. M. 1992. Tyrosine phosphorylation of CD22 during B cell activation. Science 258:1001.

    Article  PubMed  CAS  Google Scholar 

  46. Clark, E. A. 1990. CD40: A cytokine receptor in search of a ligand. Tissue Antigens 35:33.

    Article  Google Scholar 

  47. Clark, E. A. and Ledbetter, J. A. 1986. Activation of human B cells mediated through two distinct cell surface differentiation antigens, Bp35 and Bp50. Proc. Nat. Acad. Sci. USA 83:4494.

    Article  PubMed  CAS  Google Scholar 

  48. Banchereau, J., de Paoli, P., Valle, A., Garcia, E., and Rousset, F. 1991 Long-term human B cell lines dependent on interleukin 4 and anti-CD40. Science 251:70.

    Article  PubMed  CAS  Google Scholar 

  49. Spriggs, M. K., Armitage, R. J., Strockbine, L., et al. 1992. Recombinant human CD40 ligand stimulates B cell proliferation and immunoglobulin E secretion. J. Exp. Med. 176:1543.

    Article  PubMed  CAS  Google Scholar 

  50. Liu, Y-J., Joshua, D. E., Williams, G. T., Smith, C. A., Gordon, J., and MacLennan, I. C. M. 1989. Mechanisms of antigen-driven selection in germinal centres. Nature 342:929.

    Article  PubMed  CAS  Google Scholar 

  51. Valentine, M. A. and Licciardi, K. A. 1992. Rescue from anti-IgM-induced cell death by the B cell surface proteins CD20 and CD40. Eur. J. Immunol. 22:3141–3146.

    Article  PubMed  CAS  Google Scholar 

  52. Tsubata, T., Wu, J., and Honjo, T. 1993. B-cell apoptosis induced by antigen receptor crosslinking is blocked by a T-cell signal through CD40. Nature 364:645.

    Article  PubMed  CAS  Google Scholar 

  53. Hill, A. and Chapel, H. 1993. The fruits of cooperation. Nature 361:494.

    Article  PubMed  CAS  Google Scholar 

  54. Kawabe, T., Yoshida, K., Yoshida, N., Kishimoto, T., and Kikutani, H. 1993. Generation and analysis of CD40 deficient mice. Tis. Antigens 42:309.

    Google Scholar 

  55. Lalmanach-Girard, A. C., Chiles, T. C., Parker, D. C., and Rothstein, T. L. 1993. T cell-dependent induction of NF-kB in B cells. J. Exp. Med. 177:1215.

    Article  PubMed  CAS  Google Scholar 

  56. Berberich, I., Shu, G., and Clark, E. A. Crosslinking CD40 on B cells rapidly activates the transcription factor NF-kB. Submitted.

    Google Scholar 

  57. Clark, E. A. and Shu, G. L. 1990. Linkage between IL-6 and CD40 signaling: IL-6 activates the phosphorylation of CD40. J. Immunol. 145:1400.

    PubMed  CAS  Google Scholar 

  58. Hirano, T., Akira, S., Taga, T., and Kishimoto, T. 1990. Biological and clinical aspects of interleukin 6. Immunol. Today 11:4

    Article  PubMed  CAS  Google Scholar 

  59. Uckun, F. M., Schieven, G. L., Dibirdik, L, et al., 1991. Stimulation of protein tyrosine phosphorylation, phosphoinositide turnover, and multiple previously unidentified serine/threonine-specific protein kinases by the pan-B-cell receptor CD40/Bp50 at discrete developmental stages of human B-cell ontogeny. J. Biol. Chem. 266:17478.

    PubMed  CAS  Google Scholar 

  60. Ren, C. L., Morio, T., Fu, S. M., and Geha, R. S. 1994. Signal transduction via CD40 involves activation of lyn kinase and phosohatidylinositol-3-kinase, and phosphorylation of phospholipase Cγ2 J. Exp. Med. 179:673.

    Article  PubMed  CAS  Google Scholar 

  61. Kansas, G. S. and Tedder, T. F. 1991. Transmemberane signals generated through MHC class II, CD19, CD20, CD39 and CD40 antigens induce LFA-1-dependent and independent adhesion in human B cells through a tyrosine kinase-dependent pathway. J. Immunol. 147:4094.

    PubMed  CAS  Google Scholar 

  62. Stade, B. G., Messer, G., Riethmuller, G., and Johnson, J. P. 1990. Structural characteristics of the 5′. region of the human ICAM-1 gene. Immunobiology 182:79.

    Article  PubMed  CAS  Google Scholar 

  63. Vorarberger, G., Schafer, R., and Stratowa, C. 1991. Cloning of the human gene for intercellular adhesion molecule 1 and analysis of its 5′-regulatory region. J. Immunol. 147:2777.

    Google Scholar 

  64. Schwartz, R. H. 1992. Costimulation of T lymphocytes: The role of CD28, CTLA-4, and B7/BB-1 in interleukin-2 production and immunotherapy Cell 71:1055.

    Article  Google Scholar 

  65. Klaus, S. J., Pinchuk, L., Ochs, H. D., Fanslow, W. C., Armitage, R. J., and Clark, E. A. 1994. Costimulation through CD28 enhances T cell-dependent B cell activation via a CD40-CD40L interaction. J. Immunol. 152: in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Clark, E.A., Berberich, I., Klaus, S.J., Law, CL., Sidorenko, S.P. (1994). Accessory Molecules that Influence Signaling Through B Lymphocyte Antigen Receptors. In: Gupta, S., Paul, W.E., DeFranco, A., Perlmutter, R.M. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation V. Advances in Experimental Medicine and Biology, vol 365. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0987-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0987-9_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0989-3

  • Online ISBN: 978-1-4899-0987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics