Advertisement

X-Linked Agammaglobulinemia and Bruton’s Tyrosine Kinase

  • Satoshi Tsukada
  • Owen N. Witte
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 365)

Abstract

The genetic defect associated with human X-linked agammaglobulinemia (XLA) and murine X-linked immunodeficiency (XID) was recently identified as the deficiency of function of a new cytoplasmic tyrosine kinase called Bruton’s tyrosine kinase (Btk)1,2,3,4. The phenotypes associated with these immunodeficiencies indicate that Btk plays a crucial role in B lymphocyte development.

Keywords

Unique Region Chromosome Inactivation Tyrosine Kinase Gene Cytoplasmic Tyrosine Kinase Thymus Dependent Antigen 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsukada, S., Saffran, D. C., Rawlings, D. J., Parolini, O., Allen, R. C., Klisak, L, Sparkes, R. S., Kubagawa, H., Mohandas, T., Quan, S., Belmont, J. W., Cooper, M. D., Conley, M. E., and Witte, O. N., Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia, Cell 72. 279–290 (1993).PubMedCrossRefGoogle Scholar
  2. 2.
    Vetrie, D., Vorechovsky, L, Sideras, P., Holland, J., Davies, A., Flinter, F., Hammarström, L., Kinnon, C., Levinsky, R., Bobrow, M., Smith, C. I. E., and Bentley, D. R., The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases, Nature 361. 226–233 (1993).PubMedCrossRefGoogle Scholar
  3. 3.
    Rawlings, D. J., Saffran, D. C., Tsukada, S., Largaespada, D. A., Grimaldi, J. C., Cohen, L., Mohr, R. N., Bazan, J. F., Howard, M., Copeland, N. G., Jenkins, N. A., and Witte, O. N., Mutation of the amino-terminal unique region of bruton’s tyrosine kinase in murine X-linked immunodeficiency, Science 358. 358–361 (1993).CrossRefGoogle Scholar
  4. 4.
    Thomas, J. D., Sideras, P., Smith, C. I. E., Vorechovsky, I., Chapman, V., and Paul, W. E., Colocalization of X-linked agammaglobulinemia and X-linked immunodeficiency genes, Science 261. 355–358 (1993).PubMedCrossRefGoogle Scholar
  5. 5.
    Bruton, O. C., Agammaglobulinemia, Pediatrics 9. 722–727 (1952).PubMedGoogle Scholar
  6. 6.
    Singer, J. W., and Fialkow, P. J., Expression of the gene defect in X-linked agammaglobulinemia, N. Engl. J. Med. 315. 564–567 (1986).PubMedCrossRefGoogle Scholar
  7. 7.
    Campana, D., Farrant, J., Inamdar, N., Webster, A. D. B., and Janossy, G., Phenotypic features and proliferative activity of B cell progenitors in X-linked agammaglobulinemia, J. Immunol. 145. 1675–1680 (1990).PubMedGoogle Scholar
  8. 8.
    Conley, M. E., B cells in patients with X-linked agammaglobulinemia, J. Immunol. 134. 3070–3074 (1985).PubMedGoogle Scholar
  9. 9.
    Kwan, S.-P., Kunkel, L., Bruns, G., Wedgewood, R. J., Latt, S., and Rosen, F. S., Mapping of the X-linked agammaglobulinemia locus by use of restriction fragment-length polymorphism, J. Clin. Invest. 77. 649–652 (1986).PubMedCrossRefGoogle Scholar
  10. 10.
    Mensink, E. J. B. M., Thompson, A, Schot, J. D. L., van de Greef, W. M. M., Sandkuyl, L. A, and Schuurman, R. K. B., Mapping of a gene for X-linked agammaglobulinemia and evidence for genetic heterogeneity, Hum. Genet. 73. 327–332 (1986).PubMedCrossRefGoogle Scholar
  11. 11.
    Malcolm, S., de Saint Basile, G., Arveiler, B., Lau, Y. L., Szabo, P., Fischer, A, Griscelli, C., Debre, M., Mandel, J. L., Callard, R. E., Robertson, M. E., Goodship, J. A, Pembrey, M. E., and Levinsky, R. J., Close linkage of random DNA fragments from Xq 21.3-22 to X-linked agammaglobulinemia (XLA), Hum. Genet. 77. 172–174 (1987).PubMedCrossRefGoogle Scholar
  12. 12.
    Guioli, S., Arveiler, B., Bardoni, B., Notarangelo, L. D., Panina, P., Duse, M., Ugazio, A, de Saint Basile, G., Mandel, J. L., and Camerino, G., Close linkage of probe p212 (DXS178) to X-linked agammaglobulinemia, Hum. Genet. 84. 19–21 (1989).PubMedCrossRefGoogle Scholar
  13. 13.
    Kwan, Sau-P., Terwilliger, J., Parmley, R., Raghu, G., Sandkuyl, L. A, Ott, J., Ochs, H., Wedgwood, R., and Rosen, F., Identification of closely linked DNA marker, DXS178, to further refine the X-linked agammaglobulinemia locus, Genomics 6. 238–242 (1990).PubMedCrossRefGoogle Scholar
  14. 14.
    Parolini, O., Hejtmancik, J. F., Allen, R. C., Belmont, J. W., Lassiter, G. L., Henry, M. J., Barker, D. F., and Conley, M. E., Linkage analysis and physical mapping near the gene for X-linked agammaglobulinemia at Xq22, Genomics 15. 342–349 (1993).PubMedCrossRefGoogle Scholar
  15. 15.
    Scher, I., The CBA/N mouse strain: an experimental model illustrating the influence of the X-chromosome on immunity, Adv. Immunol. 33. 1–71 (1982).PubMedCrossRefGoogle Scholar
  16. 16.
    Hitoshi, Y., Sonoda, E., Kikuchi, Y., Yonebara, S., Nakauchi, H., and Takatsu, K., Interleukin 5 receptor positive B cells, but not eosinophils, are functionally and numerically influenced in the mice carrying the X-linked immune defect, Int. Immunol. 5. 1183–1190 (1993).PubMedCrossRefGoogle Scholar
  17. 17.
    Go, N. F., Castle, B. E., Barrett, R., Kastelein, R., Dang, W., Mosmann, T. R., Moore, K. W., and Howard, M., Interleukin 10, a novel B cell stimulatory factor: Unresponsiveness of X chromosome-linked immunodeficiency B cells, J. Exp. Med. 172. 1625–1631 (1990).PubMedCrossRefGoogle Scholar
  18. 18.
    Nahm, M. H., Paslay, J. W., and Davie, J. M., Unbalanced X chromosome mosaicism in B cells of mice with X-linked immunodeficiency, J. Exp. Med. 158. 920–931 (1983).PubMedCrossRefGoogle Scholar
  19. 19.
    Hillyard, A L., Doolittle, D. P., Davisson, M. T., and Roderick, T. H., Locus map of the mouse, Mouse Genome 90. 8–21 (1992).Google Scholar
  20. 20.
    Copeland, N. G., and Jenkins, N. A, Development and applications of a molecular genetic linkage map of the mouse genome, TIG 7. 113 (1991).PubMedGoogle Scholar
  21. 21.
    Scherle, P. A, Dorshkind, K., and Witte, O. N., Clonal lymphoid progenitor cell lines expressing the BCR/ABL oncogene retain full differentiative function, Proc. Natl. Acad. Sci. USA 87. 1908–1912 (1990).PubMedCrossRefGoogle Scholar
  22. 22.
    Saffran, D. C., Faust, E. A., and Witte, O. N., Establishment of a reproducible culture technique for the selective growth of B-cell progenitors, Curr. Top. Microbiol. Immunol. 182. 34–44 (1992).Google Scholar
  23. 23.
    Gregory, R. J., Kammermeyer, K. L., Vincent, W. S., III, and Wadsworth, S. G., Primary sequence and developmental expression of a novel Drosophila melanogaster src gene, Mol. Cell. Biol. 7. 2119–2127 (1987).PubMedGoogle Scholar
  24. 24.
    Mano, H., Mano, K., Tang, B., Koehler, M., Yi, T., Gilbert, D. J., Jenkins, N. A., Copeland, N. G., and Ihle, J. N., Expression of novel form of Tec kinase in hematopoietic cells and mapping of the gene to chromosome 5 near Kit, Oncogene 8. 417–424 (1993).PubMedGoogle Scholar
  25. 25.
    Siliciano, J. D., Morrow, T. A., and Desiderio, S., V, itk, a T-cell-specific tyrosine kinase gene inducible by interleukin 2, Proc. Natl Acad. Sci. USA 89. 11194–11198 (1992).PubMedCrossRefGoogle Scholar
  26. 26.
    Heyeck, S. D., and Berg, L. J., Developmental regulation of a murine T-cell-specific tyrosine kinase gene, Tsk, Proc. Natl. Acad. Sci. USA 90. 669–673 (1993).CrossRefGoogle Scholar
  27. 27.
    Musacchio, A., Gibson, T., Rice, P., Thompson, J., and Saraste, M., The PH domain is a common piece in the structural patchwork of signalling proteins, TIBS 18. 343–348 (1993).PubMedGoogle Scholar
  28. 28.
    Mayer, B. J., Ren, R., Clark, K. L., and Baltimore, D., A putative modular domain present in diverse signaling protein, Cell 73. 629–630 (1993).PubMedCrossRefGoogle Scholar
  29. 29.
    Haslam, R. J., Kolde, H. B., and Hemmings, B. A., Pleckstrin domain homology, Nature 363. 309–310 (1993).PubMedCrossRefGoogle Scholar
  30. 30.
    Saffran, D. C., Parolini, O., Fitch-Hilgenberg, M. E., Rawlings, D. J., Afar, D. E. H., Witte, O. N., and Conley, M. E., A point mutation in the SH2 domain of Bruton’s tyrosine kinase resulting in protein instability and atypical X-linked agammaglobulinemia, in press (1993).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Satoshi Tsukada
    • 1
  • Owen N. Witte
    • 1
  1. 1.Howard Hughes Medical Institute, Department of Microbiology and Molecular GeneticsUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations