Skip to main content

Function of the Common β Subunit of the GM-CSF/IL-3/IL-5 Receptors

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 365))

Abstract

Interleukin 3 (IL-3) and granulocyte-macrophage colony stimulating factor (GM-CSF) stimulate various lineage-committed cells as well as early multipotential progenitors while interleukin 5 (IL-5) stimulates eosinophils and basophils1. These three cytokines induce similar intracellular signals and exhibit similar functions in their common target cells. Although primary amino acid sequences of IL-3, IL-5 and GM-CSF show no obvious homology, they consist of four α-helices and their gross tertiary structures are similar. Interestingly, binding of a human cytokine to its high affinity receptor is inhibited by another cytokine on their common target cells, e.g. high affinity IL-3 binding to its receptor is inhibited by GM-CSF and vice versa2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Arai, F. Lee, A. Miyajima, S. Miyatake, N. Arai, and T. Yokota, Cytokines: coordinators of immune and inflammatory responses. Annu. Rev. Biochem. 59: 783 (1990).

    Article  PubMed  CAS  Google Scholar 

  2. A.F. Lopez, M.V. Vadas, J.M. Woodcock, S.E. Milton, A. Lewis, M.J. Elliott, D. Gillis, R. Ireland, E. Olwell, and L.S. Park, Interleukin-5, interleukin-3, and granulocyte-macrophage colony-stimulating factor cross-compete for binding to cell surface receptors on human eosinophils. J. Biol. Chem.. 266: 24741 (1991).

    PubMed  CAS  Google Scholar 

  3. A. Miyajima, A. L-F. Mui, T. Ogorochi, and K. Sakamaki, Receptors for granulocyte-macrophage colony-stimulating factor, interleukin 3 and interleukin 5. Blood. 82: 1960 (1993).

    PubMed  CAS  Google Scholar 

  4. K. Sakamaki, I. Miyajima, T. Kitamura, and A. Miyajima, Critical cytoplasmic domains of the common beta subunit of the human GM-CSF, IL-3 and IL-5 receptors for growth signal transduction and tyrosine phosphorylation. EMBO J. 11: 3541 (1992).

    PubMed  CAS  Google Scholar 

  5. T. Satoh, M. Nakafuku, A. Miyajima, and Y. Kaziro, Involvement of ras p21 protein in signal-transduction pathways from interleukin 2, interleukin 3, and granulocyte/macrophage colony-stimulating factor, but not from interleukin 4. Proc Natl Acad Sci USA. 88: 3314 (1991).

    Article  PubMed  CAS  Google Scholar 

  6. V. Duronio, M.J. Welham, S. Abraham, P. Dryden, and J.W. Schrader, p21ras activation via hemopoietin receptors and c-kit requires tyrosine kinase activity but not tyrosine phosphorylation of p21ras GTPase-activating protein. Proc. Natl. Acad. Sci. USA.. 89: 1587 (1992).

    Article  PubMed  CAS  Google Scholar 

  7. N. Sato, K. Sakamaki, N. Terada, K. Arai, and A. Miyajima, Signal transduction by the high affinity GM-CSF receptor: two distinct cytoplasmic regions of the common β subunit responsible for differentiation. EMBO J.. 12: 4181 (1993).

    PubMed  CAS  Google Scholar 

  8. E. J. Lowenstein, R.J. Daly, A.G. Batzer, W. Li, B. Margolis, R. Lammers, A. Ullrich, E.Y. Skolnik, S.D. Bar, and J. Schlessinger, The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 70: 431 (1992).

    Article  PubMed  CAS  Google Scholar 

  9. G. Pelicci, L. Lanfrancone, F. Grignani, J. McGlade, F. Cavallo, G. Forni, I. Nicoletti, F. Grignani, T. Pawson, and P.G. Pelicci, A novel transforming protein (SHC) with an SH2 domain is implicated in mitogenic signal transduction. Cell. 70: 93 (1992).

    Article  PubMed  CAS  Google Scholar 

  10. E. Gulbins, K. Coggeshall, G. Baier, S. Katzav, P. Burn, and A. Altman, Tyrosine kinase-stimulated guanine nucleotide exchange activity of vav in T cell activation. Science. 260: 822 (1993).

    Article  PubMed  CAS  Google Scholar 

  11. A. Mui, R. Cutler, M. Alai, X. Bustelo, M. Barbacid, and G Krystal, Steel factor and interleukin-3 stimulate the tyrosine phosphorylation of p95vav in hemopoietic cell lines. Exp Hematol. 20: 752a (1992).

    Google Scholar 

  12. L. Van Aelst, M. Barr, S. Marcus, A. Polverino, and M. Wigler, Complex formation between RAS and RAF and other protein kinases. Proc. Natl. Acad. Sci. USA. 90: 6213 (1993).

    Article  PubMed  Google Scholar 

  13. E. Nishida and Y. Gotoh, The MAP kinase cascade is essential for diverse signal transduction pathways. Trends Biochem Sci. 18: 128 (1993).

    Article  PubMed  CAS  Google Scholar 

  14. J. Blenis, J. Chung, E. Erikson, D.A. Alcorta, and R.L. Erikson, Distinct mechanisms for the activation of the RSK kinases/MAP2 kinase/pp90rsk and pp70-S6 kinase signaling systems are indicated by inhibition of protein synthesis. Cell Growth Diff.. 2: 279 (1991).

    PubMed  CAS  Google Scholar 

  15. L.M. Wang, A.D. Keegan, W.E. Paul, M.A. Heidaran, J.S. Gutkind, and J.H. Pierce, L-4 activates a distinct signal transduction cascade from IL-3 in factor-dependent myeloid cells. EMBO J. 11: 4899 (1992).

    PubMed  CAS  Google Scholar 

  16. J. Domen, N.M.T. van der Lugt, P. Laird, C.J.M. Saris, A.R. Clarke, M.L. Hooper, and A. Berns, Impaired interleukin-3 response in Pim-1-deficient bone marrow-derived mast cells. Blood. 82: 1445 (1993).

    PubMed  CAS  Google Scholar 

  17. H.-M. Wang, M. Collins, K. Arai, and A. Miyajima, EGF induces differentiation of an IL-3-dependent cell line expressing the EGF receptor. EMBO J. 8: 3677 (1989).

    PubMed  CAS  Google Scholar 

  18. S. Watanabe, A. L. Mui, A. Muto, J.X. Chen, K. Hayashida, T. Yokota, A. Miyajima, and K. Arai, Reconstituted human granulocyte-macrophage colony-stimulating factor receptor transduces growth-promoting signals in mouse NIH3T3 cells: Comparison with signaling in BA/F3 pro-B cells. Mol Cell Biol. 13: 1440 (1993).

    PubMed  CAS  Google Scholar 

  19. X-Y. Fu, A transcription factor with SH2 and SH3 domains is directly activated by an interferon α-induced cytoplasmic protein tyrosine kinase(s). Cell. 70: 323 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. L.S. Artgetsinger, G.S. Cambell, X. Yang, B.A. Witthuhn, O. Silvennoinen, J.N. Ihle, and C. Carter-Su, Identification of JAK2 as a growth hormone receptor-associated tyrosine kinase. Cell. 74: 237 (1993).

    Article  Google Scholar 

  21. B.A. Witthuhn, F.W. Quelle, O. Silvennoinen, T. Yi, B. Tang, O. Miura, and J.N. Ihle, JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 74: 227 (1993).

    Article  PubMed  CAS  Google Scholar 

  22. O. Silvennoinen, B.A. Witthuhn, F.W. Quelle, J.L. Cleveland, T. Yi, and J.N. Ihle, Structure of the murine JAK2 protein tyrosine kinase and its role in IL-3 signal transduction. Proc. Natl. Acad. Sci. USA.. 90: 8429 (1993).

    Article  PubMed  CAS  Google Scholar 

  23. J. Schlessinger and A. Ullrich: Growth factor signaling by receptor tyrosine kinases. Neuron. 9: 383 (1992).

    Article  PubMed  CAS  Google Scholar 

  24. S. Davis, T.H. Aldrich, N. Stahl, L. Pan, T. Taga, T. Kishimoto, I.N. Y., and G.D. Yancopoulos, LIFRβ and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science. 260: 1805 (1993).

    Article  PubMed  CAS  Google Scholar 

  25. M. Murakami, M. Hibi, N. Nakagawa, T. Nakagawa, K. Yasukawa, K. Yamanishi, T. Taga, and T. Kishimoto, IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science. 260: 1808 (1993).

    Article  PubMed  CAS  Google Scholar 

  26. N. Stahl, T.G. Boulton, T. Farruggella, N.Y. Ip, S. Davis, B.A. Witthuhn, F.W. Quelle, O. Silvennoinen, G. Barbieri, S. Pellegrini, J.N. Ihle, and G.D. Yancopoulos, Association and activation of Jak-Tyk kinases by CNTF-LIF-OSM-IL-6 β receptor components. Science. 263: 92 (1994).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mui, A. et al. (1994). Function of the Common β Subunit of the GM-CSF/IL-3/IL-5 Receptors. In: Gupta, S., Paul, W.E., DeFranco, A., Perlmutter, R.M. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation V. Advances in Experimental Medicine and Biology, vol 365. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0987-9_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0987-9_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0989-3

  • Online ISBN: 978-1-4899-0987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics