Skip to main content

Involvement of Nonreceptor Protein Tyrosine Kinases in Multichain Immune Recognition Receptor Signal Transduction

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 365))

Abstract

The nonreceptor protein tyrosine kinases (PTKs) represent cellular enzymes grouped together based upon their lack of defined extracellular sequences. The currently identified nonreceptor PTKs can be divided into nine different enzyme groups based upon predicted structural features. With the exception of the Focal Adhesion Kinase (Fak) and the Activated Cdc42Hs-associated Kinase (Ack) which are the only known members of these two individual PTK groups, the remaining PTKs appear to be members of distinct PTK families. They range in size from about 50 kDa for the C-src Kinase (Csk) family to approximately 150 kDa for the Abl kinase family. All of these PTKs are likely to be involved in one or more signaling pathways that modulate growth, differentiation, and mature cell function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.K. Hanks, A.M. Quinn, and T. Hunter, The protein kinase family: conserved features and deduced phylogeny of the catalytic domains, Science, 241:42–52, (1988).

    Article  PubMed  CAS  Google Scholar 

  2. A.F. Wilks, A.G. Harpur, R.R. Kurban, S.J. Ralph, G. Zurcher, and A. Ziemmeicki, Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase, Mol. Cell. Biol., 11:2057–2065, (1991).

    PubMed  CAS  Google Scholar 

  3. S. Nada, M. Okada, A. MacAuley, J.A. Cooper, and H. Nakagawa, Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src, Nature, 351:69–72, (1991).

    Article  PubMed  CAS  Google Scholar 

  4. S. Klages, D. Adam, K. Class, J. Fargnoli, J.B. Bolen, and R.C. Penhallow, Ctk: a novel protein tyrosine kinase related to Csk that defines a new enzyme family, Proc. Natl. Acad. Sci. U.S.A., 91:2597–2601 (1994).

    Article  PubMed  CAS  Google Scholar 

  5. A.C. Chan, M. Iwashima, C.W. Turck, and A. Weiss., ZAP-70: a 70-kD protein tyrosine kinase that associates with the TCR ζchain, Cell, 71:649–662, (1992).

    Article  PubMed  CAS  Google Scholar 

  6. T. Pawson, and G.D. Gish, SH2 and SH3 domains: from structure to function, Cell, 71:359–362, (1992).

    Article  PubMed  CAS  Google Scholar 

  7. B.J. Mayer, and D. Baltimore, Signaling through SH2 and SH3 domains. Trends in Cell Biol., 3:8–13, (1993).

    Article  CAS  Google Scholar 

  8. E. Manser, T. Leung, H. Salihuddin, L. Tan, and L. Lim, A non-receptor tyrosine kinase that inhibits the GTPase activity of p21cdc42, Nature, 363:364–367 (1993).

    Article  PubMed  CAS  Google Scholar 

  9. Z. Songyang, S.E. Shoelson, M. Chaudhuri, G. Gish, T. Pawson, W.G. Haser, F. King, T. Roberts, S. Tarnofsky, R.J. Lechleider, B.G. Neel, R.B. Birge, J.E. Fajardo, M.M. Chou, H. Hanafusa, B. Schaffhausen, and L.C. Cantley, SH2 domains recognize specific phosphopeptide sequences, Cell, 72:767–778 (1993).

    Article  PubMed  CAS  Google Scholar 

  10. C.A. Koch, D. Anderson, M.F. Moran, C. Ellis, and T. Pawson, SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins, Science, 252:668–674, (1991).

    Article  PubMed  CAS  Google Scholar 

  11. R. Ren, B.J. Mayer, P. Cicchetti, and D. Baltimore. Identification of a ten amino acid proline rich SH3 binding site, Science, 259:1157–1161, (1993).

    Article  PubMed  CAS  Google Scholar 

  12. G. Waksman, D. Kominos, S.C. Robertson, N. Pant, D. Baltimore, R.B. Birge, D. Cowburn, H. Hanafusa, B.J. Mayer, M. Overduin, M.D. Resh, C.B. Rios, L. Silverman, and J. Kuriyan, Crystal structure of the phosphotyrosine recognition domain SH2 of v-src complexed with tyrosine-phosphorylated peptides, Nature 358: 646–653, (1992).

    Article  PubMed  CAS  Google Scholar 

  13. M. Overduin, B. Mayer, C.B. Rios, D. Baltimore, and D. Cowburn, Secondary structure of src homology 2 domain of c-Abl by heteronuclear NMR spectroscopy in solution, Proc. Natl. Acad. Sci. U.S.A. 89:11673–11677, (1992).

    Article  PubMed  CAS  Google Scholar 

  14. G.W. Booker, A.L. Breeze, A.K. Downing, G. Panayatou, I. Gout, M.D. Waterfield, and I.D. Campbell, Structure of an SH2 domain of the p85a subunit of phosphatidylinositol-3-OH kinase, Nature, 358:684–687, (1992).

    Article  PubMed  CAS  Google Scholar 

  15. A. Musacchio, M. Noble, R. Paulpitt, R. Wierenga, and M. Saraste, Crystal structure of a Src-homology 3 (SH3) domain, Nature, 359:851–855, (1992).

    Article  PubMed  CAS  Google Scholar 

  16. H. Yu, M.K. Rosen, T.B. Shin, C. Seidel-Dugan, J.S. Brugge, and S.L. Schreiber, Solution structure of the SH3 domain of Src and identification of its ligand-binding site, Science, 258:1665–1668, (1992).

    Article  PubMed  CAS  Google Scholar 

  17. M.J. Eck, S.E. Shoelson, and S.C. Harrison, Recognition of a high-affinity phosphotyrosyl peptide by the Src homology-2 domain of p56lck, Nature, 362:87–91, (1993).

    Article  PubMed  CAS  Google Scholar 

  18. G. Waksman, S.E. Shoelson, N. Pant, D. Cowburn, and J. Kuriyan, Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms, Cell, 72:779–790, (1993).

    Article  PubMed  CAS  Google Scholar 

  19. J.E. Buss, M.P. Kamps, and B.M. Sefton, Myristic acid is attached to the transforming protein of Rous sarcoma virus during or immediately after synthesis and is present in both soluble and membrane-bound forms of the protein, Mol. Cell. Biol. 4:2697–2704, (1984).

    PubMed  CAS  Google Scholar 

  20. M.P. Kamps, J.E. Buss, and B.M. Sefton, Mutation of NH2-terminal glycine of p60src prevents both myristylation and morphological transformation, Proc. Natl. Acad. Sci. U.S.A., 82:4625–4628, (1985).

    Article  PubMed  CAS  Google Scholar 

  21. P. Jackson, and D. Baltimore, N-terminal mutations activate the leukemogenic potential of the myristolated form of c-Abl, EMBOJ., 8:449–456, (1989).

    CAS  Google Scholar 

  22. G.Q. Daley, R.A. Van Etten, P. Jackson, A. Bernards, and D. Baltimore, Nonmyristolated Abl proteins transform a factor-dependent hematopoietic cell line, Mol. Cell. Biol. 12:1864–1871, (1992).

    PubMed  CAS  Google Scholar 

  23. M.D. Resh, Membrane interactions of pp60v-src: a model for myristylated tyrosine protein kinases, Oncogene, 5:1437–1444, (1990).

    PubMed  CAS  Google Scholar 

  24. LA. Paige, M.J.S. Nadley, M.L. Harrison, J.M. Cassady, and R.L. Geahlen, Reversible palmitylation of the protein tyrosine kinase p56lck, J. Biol. Chem. 268: 8669–8674, (1993).

    PubMed  CAS  Google Scholar 

  25. A.M. Shenoy-Scaria, J. Kwong, T. Fujita, M.W. Olszowy, A.S. Shaw, and D.M. Lublin, Signal transduction through decay-accelerating factor. Interaction of glycosyl-phosphatidylinositol anchor and protein tyrosine kinases p56lck and p59fyn, J. Immunol. 149: 3535–3541 (1992).

    PubMed  CAS  Google Scholar 

  26. P.M. Thomas, and L.E. Samelson, The glycophosphatidylinositol-anchored Thy-1 molecule interacts with the p60fyn protein tyrosine kinase. J. Biol. Chem. 267: 12317–12322, (1992).

    PubMed  CAS  Google Scholar 

  27. A.M. Shenoy-Scaria, L.K. Timson Gauen, J. Kwong, A.S. Shaw, and D.M. Lublin, Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phosphatidylinositol-anchored proteins, Mol. Cell. Biol. 13: 6385–6392, (1993).

    PubMed  CAS  Google Scholar 

  28. M. Reth, Antigen receptor tail clue, Nature, 338:383, (1989).

    Article  PubMed  CAS  Google Scholar 

  29. L.E. Samelson, and R.D. Klausner, Tyrosine kinases and tyrosine-based activation motifs — current research on activation via the T cell antigen receptor, J. Biol. Chem. 267:24913–24916, (1992).

    PubMed  CAS  Google Scholar 

  30. A. Weiss, T cell antigen receptor signal transduction: a tale of tails and cytoplasmic protein-tyrosine kinases, Cell, 73:209–212, (1993).

    Article  PubMed  CAS  Google Scholar 

  31. J.C. Cambier, and K.S. Campbell, Membrane immunoglobulin and its accomplices: new lessons from an old receptor, FASEB J., 6:3207–3217, (1992).

    PubMed  CAS  Google Scholar 

  32. F. Letourner, and R.D. Klausner, Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 ε, Science, 255:79–82, (1992).

    Article  Google Scholar 

  33. K.M. Kim, G. Alber, P. Weiser, and M. Reth, Differential signaling through the Igα and Igβ components of the B cell antigen receptor, Eur.J. Immunol, 132:125–146, (1993).

    CAS  Google Scholar 

  34. M. Sanchez, Z. Misulovin, A.L. Burkhardt, S. Mahajan, T. Costa, R. Franke, J.B. Bolen, and M. Nussenzweig, Signal transduction by immunoglobulin is mediated through Igα and Igβ, J. Exp. Med., 178:1049–1055, (1993).

    Article  PubMed  CAS  Google Scholar 

  35. B.A. Irving, A.C. Chan, and A. Weiss, Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain, J. Exp. Med., 177:1093–1103, (1993).

    Article  PubMed  CAS  Google Scholar 

  36. F. Letourner, and R.D. Klausner, T-cell and basophil activation through the cytoplasmic domain of T cell receptor ζ family members, Proc. Natl. Acad. Sci. U.S.A., 88:8905–8909, (1991).

    Article  Google Scholar 

  37. A.L. Burkhardt, T. Costa, Z. Misulovin, B. Stealey, J.B. Bolen, and M.C. Nussenzweig, Iga and Igβ are functionally homologous to the signaling proteins of the T-cell receptor, Mol. Cell. Biol., 14:1095–1103,(1994).

    PubMed  CAS  Google Scholar 

  38. C. Romeo, M. Amiot, and B. Seed, Sequence requirements for the induction of cytolysis by the T cell antigen/Fc receptor ζ chain, Cell, 68:889–897, (1992).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media New York

About this chapter

Cite this chapter

Burkhardt, A.L., Saouaf, S.J., Mahajan, S., Bolen, J.B. (1994). Involvement of Nonreceptor Protein Tyrosine Kinases in Multichain Immune Recognition Receptor Signal Transduction. In: Gupta, S., Paul, W.E., DeFranco, A., Perlmutter, R.M. (eds) Mechanisms of Lymphocyte Activation and Immune Regulation V. Advances in Experimental Medicine and Biology, vol 365. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0987-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0987-9_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0989-3

  • Online ISBN: 978-1-4899-0987-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics