Biosynthesis of Aspergillus Toxins — Non-Aflatoxins

  • Maurice O. Moss
Part of the Federation of European Microbiological Societies Symposium Series book series (FEMS, volume 69)


Mycotoxins are a sub-set of the vast array of natural products referred to as secondary metabolites. The evolutionary origin and the role of secondary metabolites for the producing organisms are still areas of vigorous debate but there is a growing concensus that secondary metabolism will benefit the organism and this benefit will usually reflect the nature of the metabolites themselves (Vining, 1992).


Secondary Metabolite Secondary Metabolism Fusarium Moniliforme Aspergillus Terreus Cyclopiazonic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderegg, R.J., Biemann, K., Büchi, G. and Cushman, M. (1976) Malformin C., a new metabolite of Aspergillus niger. J. Amer. C.em. Soc. 98, 3365–3370.CrossRefGoogle Scholar
  2. Assante, G., Merlini, L. and Nasini, G. (1977) (+)-Abscisic acid, a metabolite of the fungus Cercospora rosicola. Experientia 33, 1556–1557.CrossRefGoogle Scholar
  3. Beck, J., Ripka, S., Siegner, A., Schütz, E. and Schweize, E. (1990) The multifunctional 6-methyl-salicylic acid synthase gene of Penicillium patulum: its gene structure relative to that of other polyketide synthases. Eur. J. Biochem. 192, 487–498.PubMedCrossRefGoogle Scholar
  4. Bezuidenhout, S.C., Gelderblom, W.C.A., Gorst-Allman, C.P., Horak, R.M., Marasas, W.F.O., Spiteller, G. and Vleggaar, R. (1988) Structure elucidation of the fumonisins, mycotoxins from Fusarium moniliforme. J. Chem. Soc, Chem. Comm., 743–745.Google Scholar
  5. Birch, A.J. and Donovan, F.W. (1953) Studies in relation to biosynthesis I. Some possible routes to derivatives of orcinol and phloroglucinol. Aust. J. Chem. 6, 360–368.CrossRefGoogle Scholar
  6. Birch, A.J. and Hussain, S.F. (1969) Studies in relation to biosynthesis. Part XXXVIII. A preliminary study of fumagillin. J. Chem Soc (C), 1473–1474.Google Scholar
  7. Birch, A.J., Massey-Westrop, R.A. and Moye, C.J. (1955) Studies in relation to biosynthesis VII. 2-hydroxy-6-methyl benzoic acid in Penicillium griseofulvum Dierckx. Aust. J. Chem. 8, 539–544.CrossRefGoogle Scholar
  8. Büchi, G., Kitaura, Y., Yuan, S.-S., Wright, H.E., Clardy, J., Demain, A.L., Glinsukar, T., Hunt, N., and Wogan, G.N. (1973) Structure of cytochalasin E, a toxic metabolite of Aspergillus clavatus. J. Amer. Chem. Soc. 95, 5423–5425.CrossRefGoogle Scholar
  9. Bu’Lock, J.D. and Ryles, A.P. (1970) The biogenesis of the fungal toxin gliotoxin: the origin of the “extra” hydrogens as established by heavy isotope labelling and mass spectrometry. J. Chem. Soc. Chem. Comm. 1404–1406Google Scholar
  10. Campbell, I.M. (1983) Correlation of secondary metabolism and differentiation, in “Secondary Metabolism and Differentiation in Fungi” (Bennett, J.W. and Ciegler, A., Eds.) pp. 55–72. Marcel Dekker, New York.Google Scholar
  11. Cane, D.E. and Levin, R.H. (1976) Application of Carbon-13 magnetic resonance to isoprenoid biosynthesis. II Ovalicin and the use of doubly labelled mevalonate. J. Amer. Chem. Soc. 98, 1183–1188.CrossRefGoogle Scholar
  12. Clardy, J., Springer, J.P., Büchi, G., Matsuo, K. and Wightman, R. (1975). Tryptoquivaline and tryptoquivalone, two tremorgenic metabolites of Aspergillus clavatus. J. Amer. Chem. Soc. 97, 663–665.CrossRefGoogle Scholar
  13. Cole, R.J., Dorner, J.W., Springer, J.P. and Cox, R.H. (1981) Indole metabolites from a strain of Aspergillus flavus. J. Agric. Fd. Chem. 29, 293–295.CrossRefGoogle Scholar
  14. Cundliffe, E. (1992) Self-protection mechanisms in antibiotic producers, in “Secondary Metabolites: Their Function and Evolution, Ciba Foundation Symposium 171”, (Chadwick, DJ. and Whelan, J.E., Eds.), pp. 198–208. John Wiley, Chichester.Google Scholar
  15. Fennell, D.I. (1977) Aspergillus taxonomy, in “Genetics and Physiology of Aspergillus” (Smith, J.E. and Pateman, J.A., Eds.), pp 1–22. Academic Press, London.Google Scholar
  16. Frisvad, J.C. and Samson, A. (1990) Chemotaxonomy and morphology of Aspergillus fumigatus and related taxa, in “Modem Concepts in Penicillium and Aspergillus Classification” (Samson, R.A. and Pitt, J.I., Eds.) pp 201–208. Plenum Press, New York.Google Scholar
  17. Gallagher, R.T., Clardy, J. and Wilson, B.J. (1980) Aflatrem, a tremorgenic toxin from Aspergillus flavus. Tet. Lett. 21, 239–242.CrossRefGoogle Scholar
  18. Gallagher, R.T., Finer, J., Clardy, J., Leutwiler, A., Weibel, F., Acklin, W. and Arigoni, D. (1980) Paspalinine, a tremorgenic metabolite from Claviceps paspali Stevens and Hall. Tet. Lett. 21, 235–238.CrossRefGoogle Scholar
  19. Gallagher, R.T., Richard, J.L., Stahr, H.M. and Cole, R.J. (1978) Cyclopiazonic acid production by aflatoxigenic and non-aflatoxigenic strains of Aspergillus flavus. Mycopathologia 66, 31–36.PubMedCrossRefGoogle Scholar
  20. Gallagher, R.T. and Wilson, B.J. (1978) Aflatrem, the tremorgenic mycotoxin from Aspergillus flavus. Mycopathologia 66, 183–185.CrossRefGoogle Scholar
  21. Hamasaki, T., Matsui, K., Isano, K. and Hatsuda, Y. (1973). A new metabolite from Aspergillus versicolor. Agr. Biol. Chem. 37, 1769–1770.CrossRefGoogle Scholar
  22. Hopwood, D.A. and Khosha, C. (1992) Genes for polyketide secondary metabolic pathways in microorganisms and plants, in “Secondary Metabolites: Their Function and Evolution, Ciba Foundation Symposium 171”, (Chadwick, D.J. and Whelan, J.E., Eds.), pp. 88–106. John Wiley, Chichester.Google Scholar
  23. de Jesus, A.E., Steyn, P.S., Vleggaar, R., Kirby, G.W., Varley, M.J. and Ferreira, N.P. (1981) Biosynthesis of α-cyclopiazonic acid. Steric course of proton removal during cyclisation of β-cyclopiazonic acid in Penicillium griseofulvum. J. Chem. Soc. Perkin I, 3292–3294.CrossRefGoogle Scholar
  24. Keller-Schierlein, W. and Kupfer, E. (1979) Stoffwechselprodukte von Mikroorganismen. Uber die Aspochalasine A, B, C und D. Helv. Chim. Acta 62, 1501–1524.CrossRefGoogle Scholar
  25. Kirby, G.W. and Robins, D.J. (1980) The biosynthesis of gliotoxin and related epipolythiodioxo piperazines, in “The Biosynthesis of Mycotoxins: a Study in Secondary Metabolism” (Steyn, P.S., Ed.) pp 301–326. Academic Press, New York.Google Scholar
  26. Kruger, G.J., Steyn, P.S., Vleggaar, R. and Rabie, C.J. (1979) X-ray crystal structure of asteltoxin, a novel mycotoxin from Aspergillus stellatus Curzi. J. Chem. Soc. Chem. Comm. 441–442.Google Scholar
  27. Kurtzman, C.P., Horn, B.W. and Hesseltine, C.W. (1987) Aspergillus nomius, a new aflatoxin-producing species related to Aspergillus flavus and Aspergillus tamarii. Ant. van Leeuwenhoek 53, 147–158.CrossRefGoogle Scholar
  28. Ling, K.H., Liou, H.-H., Yang, C.-M. and Yang, C.-K. (1984) Isolation, chemical structure, acute toxicity, and some physicochemical properties of territrem C from Aspergillus terreus. Appl. Environ. Microbiol. 47, 98–100.PubMedGoogle Scholar
  29. Ling, K.-H., Peng, F.-C., Chen, B.J., Wang, Y. and Lee, G.H. (1986) Isolation, physicochemical properties and toxicities of territrems A’ and B’. Saengyak Hakhoechi 17, 153–160.Google Scholar
  30. Ling, K.H., Yang, C.-K. and Peng, F.-T. (1979) Territrems, tremorgenic mycotoxins of Aspergillus terreus. Appl. Environ. Microbiol. 37, 355–357.PubMedGoogle Scholar
  31. McIntyre, C.R. and Simpson, T.J. (1981) Biosynthesis of terretonin, a polyketide-terpenoid metabolite of Aspergillus terreus. J.Chem.Soc. Chem. Comm. 1043–1044.Google Scholar
  32. Moore, R.N., Bigam, G., Chan, J.K., Hogg, A.M., Nakashima, T.T. and Vederas, J.C. (1985) Biosynthesis of the hypocholesterolemic agent mevinolin by Aspergillus terreus. Determination of the origin ofcarbon, hydrogen and oxygen atoms by carbon-13 NMR and mass spectrometry. J. Amer. Chem. Soc. 107, 3694–3671.CrossRefGoogle Scholar
  33. Moss, M.O. (1977) Aspergillus mycotoxins, in “Genetics and Physiology of Aspergillus” (Smith, J.E. and Pateman, J.A., Eds.), pp 499–524. Academic Press, London.Google Scholar
  34. Moss, M.O. (1984) The mycelial habit and secondary metabolite production, in “The Ecology and Physiology of the Fungal Mycelium” (Jennings, D.H. and Rayner, A.D.M., Eds.) pp 127–142. C.U.P., Cambridge.Google Scholar
  35. Nozoe, S., Kobayashi, H. and Marisaki, N. (1976) Isolation of β-trans bergamotene from Aspergillus fumigatus, a fumagillin producing fungus. Tet. Lett., 4625–4626.Google Scholar
  36. Peng, F.-C., Ling, K.H., Wang, Y. and Lee, G.-H. (1985) Isolation, chemical structure, acute toxicity, and some physicochemical properties of territrem B’ from Aspergillus terreus. Appl. Environ. Microbiol 49, 721–723.PubMedGoogle Scholar
  37. Rademacher, W. and Graebe, J.E. (1979) Gibberellin A4 produced by Sphaceloma manihoticola, the cause of superelongation disease of cassava. Biochem. Biophys. Res. Comm. 91, 35–40.PubMedCrossRefGoogle Scholar
  38. Richard, J.L. and Gallagher, R.T. (1979) Multiple toxin production by an isolate of Aspergillus flavus. Mycopathologia 67, 161–163.PubMedCrossRefGoogle Scholar
  39. Riley, R.T. and Goeger, D.E. (1992) Cyclopiazonic acid: speculation on its function in fungi, in “Mycotoxins in Ecological Systems” (Bhatnagar, D., Lillehoj, E.B. and Arora, D.K., Eds.) pp 385–402. Marcel Dekker, New York.Google Scholar
  40. Simpson, T.J. and Stenzel, D.J. (1981) Biosynthesis of austin, a polyketide-terpenoid metabolite of Aspergillus ustus. J. Chem. Soc. Chem. Comm. 1042–1043.Google Scholar
  41. Steenkamp, D.J., Schabort, J.C. and Ferreira, N.P. (1973) β-cyclopiazonate oxidocyclase from Penicillium cyclopium III Preliminary studies on the mechanism of action. Biochim. et Biophys. acta 309, 440–456.CrossRefGoogle Scholar
  42. Tamm, Ch. (1980) The biosynthesis of the cytochalasins, in “The Biosynthesis of Mycotoxins: a Study in Secondary Metabolism” (Steyn, P.S., Ed.) pp 269–299. Academic Press, New York.Google Scholar
  43. Townsend, C.A., Christensen, S.B. and Trautwein, K. (1984) Hexanoate as a starter unit in polyketide biosynthesis. J. Amer. Chem. Soc. 106, 3868–3869.CrossRefGoogle Scholar
  44. Turner, W.B. and Aldridge, D.C. (1983) “Fungal metabolites II, ” pp 1–631. Academic Press, London.Google Scholar
  45. Van Middlesworth, F., Dufresne, C., Wincoth, F.E., Mosley, R.T. and Wilson, K.E. (1992b) Determination of the relative and absolute stereochemistry of sphingofungins A, B, C and D. Tet. Lett. 33, 297–300.CrossRefGoogle Scholar
  46. Van Middlesworth, F., Giacoble, R.A., Lopez, M., Garrity, G., Bland, J.A., Bartizal, K., Fromtling, R.A., Polshook, J., Zweerink, M., Edison, A.M., Rozdilsky, W., Wilson, K.E. and Monaghan, R.L. (1992a) Sphingofungins A, B, C and D; a new family of antifungal agents 1. Fermentation, isolation and biological activity. J. Antibiot. 45, 861–867.CrossRefGoogle Scholar
  47. Vederas, J.C. (1986) Biosynthetic studies on mycotoxins using multiple stable isotope labelling and NMR spectroscopy, in “Mycotoxins and Phycotoxins” (Steyn, P.S. and Vleggaar, R., Eds.) pp 97–108. Elsevier, Amsterdam.Google Scholar
  48. Vining, L.C. (1992) Role of secondary metabolites from microbes, in “Secondary Metabolites: Their Function and Evolution, Ciba Foundation Symposium 171”, (Chadwick, D.J. and Whelan, J.E., Eds.), pp. 184–194. John Wiley, Chichester.Google Scholar
  49. Webster, J. and Lomas, L. (1964) Does Trichoderma viride produce gliotoxin and viridin? Trans. Brit. Mycol. Soc. 47, 535–540.CrossRefGoogle Scholar
  50. Wilson, B.J. and Wilson, C.H. (1964) Toxin from Aspergillus flavus: production on food materials of a substance causing tremors in mice. Science 144, 177–178.PubMedCrossRefGoogle Scholar
  51. Yamazaki, M. (1980) The biosynthesis of neurotropic mycotoxins, in “The Biosynthesis of Mycotoxins: a Study in Secondary Metabolism” (Steyn, P.S., Ed.) pp 193–222. Academic Press, New York.Google Scholar
  52. Zamir, L.O. (1980) The biosynthesis of patulin and penicillic acid, in “The Biosynthesis of Mycotoxins: a Study in Secondary Metabolism” (Steyn, P.S., Ed.) pp 223–268. Academic Press, New York.Google Scholar
  53. Zweerink, M.M., Edison, A.M., Wells, G.B., Pinto, W. and Lester, R.L. (1992) Characterisation of a novel, potent, and specific inhibitor of serine palmitoyltransferase. J. Biol. Chem. 267, 25032–25038.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Maurice O. Moss
    • 1
  1. 1.School of Biological SciencesUniversity of SurreyGuildfordCanada

Personalised recommendations