Skip to main content

Control of Morphogenesis by Nervous System-derived Factors

  • Chapter
Evolution of the First Nervous Systems

Part of the book series: NATO ASI Series ((NSSA,volume 188))

  • 237 Accesses

Abstract

Intercellular communication is an essential acquisition of metazoans which allows a coordinated existence of individual cells in multicellular organisms. The invention of a nervous system during evolution made intercellular communication very rapid and effective. In addition to functioning to transmit changes in membrane potential, the role of the nervous system gains increasing interest in embryogenesis, and in regenerative processes. Hydra provides an ideal system to investigate the roots and the evolutionary development of these diverse tasks of the nervous system. Being evolutionary very old, and belonging to the first organisms to develop a nervous system, Hydra is an exciting animal for the study of the early functions of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Berking, S., 1974, Nachweis eines morphogenetisch aktiven Hemmstoffs in Hydra attenuata und Untersuchung seiner Eigenschaften und Wirkungen, Doctoral thesis, Ekerhard-Karls Universität, Tübingen.

    Google Scholar 

  • Berking, S., 1977, Bud formation in hydra: inhibition by an endogenous morphogen, Wilhelm Roux’s Arch. 181:215–225.

    Article  CAS  Google Scholar 

  • Berking, S., 1979, Control of nerve cell formation from multipotent stem cells in hydra, J. Cell Sci. 40:193–205.

    PubMed  CAS  Google Scholar 

  • Bode, H., Berking, S., David, C. N., Gierer, A., Schaller, H., and Trenkner, E., 1973, Quantitative analysis of cell types during growth and morphogenesis in hydra, Wilhelm Rowc’s Arch. 171:269–285.

    Article  Google Scholar 

  • Bode, H. R., and Flick, K. M., 1976, Distribution and dynamics of nematocyte populations in Hydra attenuata J. Cell Sci.21:15–34.

    PubMed  CAS  Google Scholar 

  • Bode, H. R., Flick, K. M., and Smith G. S., 1976, Regulation of interstitial cell differentiation in Hydra attenuata. I. Homeostatic control of interstitial cell population size, J. Cell Sci. 20:29–46.

    PubMed  CAS  Google Scholar 

  • Bode, H. R., and David, C. N., 1978, Regulation of a multipotent stem cell, the interstitial cell of hydra, Progr. Biophys. Mol. Biol. 33:198–206.

    Google Scholar 

  • Bode, P. M., and Bode, H. R., 1980, Formation of patterns in regeneration tissue pieces of Hydra attenuata. I. Head-body proportion regulation, Dev. Biol. 78:484–496.

    Article  PubMed  CAS  Google Scholar 

  • Bode, H. R., Heimfeld, S., Chow, M. A., and Huang, L. W., 1987, Gland cells arise by differentiation from interstitial cells in Hydra attenuata, Dev. Biol. 122:577–585.

    Article  PubMed  CAS  Google Scholar 

  • Bodenmüller, H., Schilling, E., Zachmann, B., and Schaller, H. C., 1986, The neuropeptide head activator loses its biological activity by dimerisation, EMBO J. 5:1825–1829.

    PubMed  Google Scholar 

  • Bosch, T., and David, C. N., 1987, Stem cells of Hydra magnipapillata can differentiate somatic cells and germ line cells, Dev. Biol. 121:182–191.

    Article  Google Scholar 

  • Campbell, R. D., 1967, Tissue dynamics of steady state growth in Hydra littoralis. III. Behaviour of specific cell types during tissue movements, J. Exp. Zool. 164:379–391.

    Article  Google Scholar 

  • David, C. N., and Campbell, R. D., 1972, Cell cycle kinetics and development of Hydra attenuata. I. Epithelial cells. J. Cell Sci. 11:557–568.

    PubMed  CAS  Google Scholar 

  • David, C. N., and Gierer, A., 1974, Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation, J. Cell Sci. 16:359–375.

    PubMed  CAS  Google Scholar 

  • David, C. N., and Murphy, S., 1977, Characterisation of interstitial stem cells in hydra by cloning, Dev. Biol. 58:373–383.

    Article  Google Scholar 

  • Dübel, S., Hoffmeister, S. A. H., and Schaller. H. C., 1987, Differentiation pathways of ectodermal epithelial cell in hydra, Differentiation 35:181–189.

    Article  PubMed  Google Scholar 

  • Dübel, S., 1989, Differentiation in the head of hydra, Differentiation, in press.

    Google Scholar 

  • Gierer, A., and Meinhardt, H., 1972, A theory of biological pattern formation, Kybernetik 12:30–39.

    Article  PubMed  CAS  Google Scholar 

  • Graf, L., and Gierer, A., 1980, Size, shape and orientation of cells in budding hydra and regulation of regeneration in cell aggregates, Wilhelm Roux’s Arch. 188:141–151.

    Article  Google Scholar 

  • Grimmelikhuijzen, C. J. P., 1979, Properties of the foot activator from hydra, Cell Differ. 8:267–273.

    Article  CAS  Google Scholar 

  • Hicklin, J., and Wolpert, L., 1973, Positional information and pattern regulation in hydra: formation of the foot end. J. Embryol. exp. Morph. 30:727–740.

    PubMed  CAS  Google Scholar 

  • Hicklin, J., Hornbruch, A., Wolpert, L., and Clarke, M., 1973, Positional information and pattern regulation in hydra: the formation of boundary regions following axial grafts, J. Embryol. exp. Morph. 30:701–725.

    PubMed  CAS  Google Scholar 

  • Hoffmeister, S. A. H., 1989, Action of foot activator on growth and differentiation of cells in hydra, Dev. Biol. 133:254–261.

    Article  PubMed  CAS  Google Scholar 

  • Hoffmeister, S. A. H., and Schaller, H. C., 1985, A new biochemical marker for foot-specific cell differentiation in hydra, Wilhelm Roux’s Arch. 194:433–461.

    Article  Google Scholar 

  • Hoffmeister, S. A. H., and Schaller, H. C., 1987, Head activator and head inhibitor are signal for nerve cell differentiation in hydra, Dev. Biol. 122:72–77.

    Article  Google Scholar 

  • Holstein, T., Schaller, H. C., and David, C. N., 1986, Nerve cell differentiation in hydra requires two signals, Dev. Biol. 115:9–17.

    Article  Google Scholar 

  • Javois, L., Wood, R. D., and Bode, H. R., 1986, Patterning of the head in hydra as visualised by a monoclonal antibody, Dev. Biol. 117:607–618.

    Article  PubMed  CAS  Google Scholar 

  • Kemmner, W., 1984, A model of head regeneration in hydra, Differentiation 26:83–90.

    Article  Google Scholar 

  • Kemmner, W., and Schalter, H. C., 1984, Actions of head activator and head inhibitor during head regeneration in hydra, Differentiation 26:91–96.

    Article  Google Scholar 

  • Moore, L. B., and Campbell, R. D., 1973, Bud initiation in a non-budding strain of hydra: role of interstitial cells, J. Exp. Zool. 184:397–407.

    Article  PubMed  CAS  Google Scholar 

  • Robergc, M., Escher, E., Schaller, H. C., and Bodenmüller, H., 1984, The hydra head activator in human blood circulation. Degradation of the synthetic peptide by plasma angiotensin-converting enzyme, FEES Lett. 173:307–313.

    Article  Google Scholar 

  • Schaller, H. C., and Gierer, A., 1973, Distribution of the head activating substance in hydra and its localisation in membranous particles in nerve cells, J. Embryol. exp. Morph. 29:39–52.

    PubMed  CAS  Google Scholar 

  • Schaller, H. C., 1976a, Action of the head activator as a growth hormone in hydra, Cell Diff. 5:1–11.

    Article  CAS  Google Scholar 

  • Schalter, H. C., 1976b, Action of the head activator on the determination of interstitial cells in hydra, Cell Diff. 5:13–20.

    Article  Google Scholar 

  • Schalter, H. C., 1976c, Head regeneration in Hydra is initiated by the release of head activator and inhibitor, Wilhelm Rowc Archiv. 180:287–295.

    Article  Google Scholar 

  • Schaller, H. C., Schmidt, T., Flick, K., and Grimmelikhuijzen, C. J. P., 1977, Analysis of morphogentic mutants of hydra. II. The non-budding mutant, Wilhelm Rowc’s Arch. 183:207–214.

    Article  Google Scholar 

  • Schaller, H. C., Schmidt, T., Flick, K., and Grimmelikhuijzen, C. J. P., 1977, Analysis of morphogenetic mutants of hydra. III Maxi and mini, Wilhelm Rowc’s Arch. 183:215–222.

    Article  Google Scholar 

  • Schaller, H. C., Schmidt, T., and Grimmelikhuijzen, C. J. P., 1979, Separation and specificity of action of four morphogens from hydra, Wilhelm Rowc’s Arch. 186:139–149.

    Article  Google Scholar 

  • Schaller, H. C., and Bodenmüller, H., 1981, Isolation and amino acid sequence of a morphogenetic peptide from hydra, Proc. Natl. Acad. Sci. USA 78:7000–7004.

    Article  PubMed  CAS  Google Scholar 

  • Schaller, H.C., Roberge, M., Zachmann, B., Hoffmeister, S., Schilling, E., and Bodenmüller, H., 1986, The head activator is released from regenerating hydra bound to a carrier molecule, EMBO J. 5:1821–1824.

    PubMed  CAS  Google Scholar 

  • Schawaller, M., Schenk, K., Hoffmeister, S. A. H., Schaller, H., and Schaller, H. C., 1988, Production and characterisation of monoclonal antibodies recognizing head activator in precursor form and immunocytochemical localisation of head activator precursor and head activator peptide in the neural cell line NH15-CA2 and in hydra, Differentiation 38:149–160.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, T., and Schaller, H. C., 1980, Properties of the foot inhibitor from hydra, Wilhelm Rowc’s Arch. 188:133–139.

    Article  CAS  Google Scholar 

  • Smid, I., and Tardent, P. 1982, The influences of ecto-and endoderm in determining the axial polarity of Hydra attenuata Pall. (Cnidaria, Hydrozoa), Wilhelm Rowc’s Arch. 191:64–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hoffmeister, S.A.H., Dübel, S. (1989). Control of Morphogenesis by Nervous System-derived Factors. In: Anderson, P.A.V. (eds) Evolution of the First Nervous Systems. NATO ASI Series, vol 188. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0921-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0921-3_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0923-7

  • Online ISBN: 978-1-4899-0921-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics