Skip to main content

Compensation of Visual Background Motion in Salamanders

  • Chapter
Visuomotor Coordination

Abstract

Self-motion produces a shift of the whole visual environment across the retinae. Any object thus may fuse with the background or at least may be incorrectly locali7ed. Compensation of visual shifts caused by self-motion can be achieved by different strategies: (i) Head and/or eyes are stabilized with respect to the environment during locomotion; (ii) proprioceptive, labyrinthine and visual background motion signals are computed together with object signals in the localization systems of the CNS. Like in other vertebrates, gaze stabilization is present in salamanders and is mediated by the (visual) optokinetik reflex and the vestibulocolic reflex. These reflexes, however, relayed in the pretectum and the vestibular nuclei, are able to compensate only 50–80% of the shift velocity in salamanders. As a consequence, high retinal slip velocities may persist during locomotion. It is assumed that this residual retinal shift is directly computed in the optic tectum. Pretectal and vestibular nuclei were found to project to the optic tectum. Whereas the signal for retinal shift velocity from the pretectum is sent directly and bilaterally to the tectum, the vestibular nucleus projects to the contralateral dorsal tegmentum, and cells in this area send head velocity related signals to both tecta. The hypothesis is proposed that these synergistic inputs establish a directional selectivity in tectal columns which suppresses responses that would be elicited by objects moving in the same direction and speed as the background.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allman J, Miezin F, McGuiness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Ann Rev Neurosci 8: 407–430

    Article  CAS  PubMed  Google Scholar 

  • Arbib MA (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Lecture notes in biomathematics, Vol 45. Springer-Verlag, Berlin Heidelberg New York, pp 342–370

    Chapter  Google Scholar 

  • Birukow G (1938) Untersuchungen über den optischen Drehnystagmus und fiber die Sehschärfe des Grasfrosches (Rana temporaria). Z Vergl Physiol25: 92–142

    Google Scholar 

  • Blanks RHI, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. R Brain Res 25: 369–390

    CAS  Google Scholar 

  • Burghagen H, Ewert J-P (1983) Influence of the background for discriminating object motion from selfinduced motion in toads Bufo bufo (L). J Comp Physiol152: 241–249

    Google Scholar 

  • Biirgi S (1957) Das Tectum opticum. Seine Verbindungen bei der Katze und seine Bedeutung beim Menschen. Dtsch ZeitschrNervenheilk 176: 701–729

    Google Scholar 

  • Büttner U, Waespe W, Miles TS (1978) Transfer characteristics of the vestibular system determined from nystagmus and neuronal activity in the alert monkey. In: Butenandt E, Hauske G (eds) Kybernetik ‘77. Oldenbourg-Verlag, pp 126–136

    Google Scholar 

  • Collewijn H (1980) Sensory control of optokinetic nystagmus in the rabbit. TINS 11: 277–280

    Google Scholar 

  • Collewijn H (1981) The oculomotor system of the rabbit and its plasticity. In: Braitenberg V (ed) Studies of brain function, Vol S. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Dacey DM, Ulinski PS (1986) Optic tectum of the eastern garter snake, Thamnophis sirtalis. V: Morphology of brainstem afferents and general discussion. J Comp Neurol 245: 423–453

    Article  CAS  PubMed  Google Scholar 

  • Dieringer N (1987) The role of compensatory eye and head movements for gaze stabilization in the unrestrained frog. Brain Res404: 33–38

    Google Scholar 

  • Dieringer N, Cochran SL, Precht W (1983) Differences in the central organization of gaze stabilizing reflexes between frog and turtle. J Comp Physiol 153: 495–508

    Article  Google Scholar 

  • Ewert J-P (1971) Single unit response of the toad’s (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102

    Article  Google Scholar 

  • Ewert J-P (1973) Lokalisation und Identifikation im visuellen System der Wirbeltiere. Fortschr Zoologie 21: 307–337

    CAS  Google Scholar 

  • Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer230:34–42

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, London New York, pp 247–416

    Google Scholar 

  • Ewert J-P, Wietersheim A If (1974) Einfluß von Thalamus/Praetecttum-Defekten auf die Antworten von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte Bufo bufo (L). J Comp Physiol92: 149–160

    Google Scholar 

  • Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition und Excitation im Beutefangverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 68: 84–110

    Article  Google Scholar 

  • Ferrera VP, Wilson HR (1987) Direction specific masking and the analysis of motion in two dimensions. Vision Res 27: 1783–1796

    Article  CAS  PubMed  Google Scholar 

  • Finkenstädt T, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153: 99–110

    Article  Google Scholar 

  • Finkenstädt T, Ebbesson SOE, Ewert J-P (1983) Projections to the midbrain tectum in Salamandra salamandra L. Cell Tiss Res 234: 39–55

    Google Scholar 

  • Fite KV, Montgomery N, Wojcicki C, Bengston L (1980) Visuomotor correlates of the anuran accessory optic system. Neurosci Abstr6: 839

    Google Scholar 

  • Fritzsch B (1980) Retinal projections in European salamandridae. Cell Tiss Res 213: 325–341

    CAS  Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Richard D, Dalbera A (1983) Optokinetic nystagmus in the pigeon (Columba livia). II: Role of the pretectal nucleus of the accessory optic system (AOS). Exp Brain Res50: 237–247

    Google Scholar 

  • Gioanni H, Rey J, Villalobos J, Dalbera A (1984) Single unit activity in the nucleus of the basal optic root (nBOR) during optokinetic, vestibular and visuo-vestibular stimulations in the alert pigeon (Columba livia). Exp Brain Res57: 49–60

    Google Scholar 

  • Grasse KL, Cynader MS (1984) Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. J Neurophysiol 51: 276–293

    CAS  PubMed  Google Scholar 

  • Gruberg ER, Grasse KL (1984) Basal optic complex in the frog (Rana pipiens): a physiological and HRP study. J Neurophysiol5l: 98–110

    Google Scholar 

  • Hamada T (1987) Neural response to the motion of textures in the lateral suprasylvian area of cats. Behav Brain Res 25: 175–185

    Article  CAS  PubMed  Google Scholar 

  • Hartmann R, Klinke R (1975) System analysis properties of primary vestibular fibers. Exp Brain Res Suppl 23: 85

    Google Scholar 

  • Heiden U an der, Roth G (1983) Cooperative neural processes in amphibian visual prey recognition. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer-Verlag, Berlin Heidelberg New York, pp 299–310

    Chapter  Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander Ambystoma tigrinum. Univ Chicago Press, Chicago

    Google Scholar 

  • Himstedt W, Roth G (1980) Neuronal responses in the tectum opticum of Salamandra to visual prey stimuli. J Comp Physiol 135: 251–257

    Article  Google Scholar 

  • Himstedt W, Heller K, Manteuffel G (1987) Neuronal responses to moving visual stimuli in different thalamic and midbrain centers of Salamandra salamandra (L). Zool Jb Physiol 91: 243–256

    Google Scholar 

  • Hoffmann K-P, Schoppmann A (1981) A quantitative analysis of direction-specific responses of neurons in the cat’s nucleus of the optic tract. Exp Brain Res42: 146–157

    Google Scholar 

  • Hoffmann K-P, Huber HP (1983) Responses to visual stimulation in single cells in the nucleus of the optic tract (NOT) during optokinetic nystagmus (OKN) in the awake cat. Neumsci Abstr9: 1048

    Google Scholar 

  • Holst E v, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem and Peripherie). Natuzwissenschaften 37: 464–476

    Article  Google Scholar 

  • Ingle DJ (1970) Visuomotor functions of the frog optic tectum. Brain BehavEvol3: 57–71 Ingle DJ (1973) Two visual systems in the frog. Science 181: 1053–1055

    Article  Google Scholar 

  • Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system, a multidisciplinary approach. Academic Press, New York, pp 119–140

    Google Scholar 

  • Ingle DJ (1980) Some effects of pretectum lesions on the frog’s detection of stationary objects. Behav Brain Res 1: 139–163

    Article  CAS  PubMed  Google Scholar 

  • Kato I, Harada K, Hasegawa T, Igarashi T, Koike Y, Kawasaki T (1986) Role of the nucleus of the optic tract in monkeys in relation to optokinetic nystagmus. Brain Res364: 12–22

    Google Scholar 

  • Kopp J (1987a) Quantitative Analyse des optokinetischen and vestibulären Nystagmus bei Amphibien. PhD Thesis, Tech Univ Darmstadt

    Google Scholar 

  • Kopp J (1987b) Vestibulo-collic reflex (VCR) and optokinetic reflex (OKR) interaction in the fire salamander (Salamandra salamandra). In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme-Verlag, Stuttgart, p 154

    Google Scholar 

  • Kopp J,Manteuffel G (1984) Quantitative analysis of salamander horizontal head nystagmus. Brain Behav Evo! 25: 187–196

    Google Scholar 

  • Kostyk SK, Grobstein P (1987) Neuronal organization underlying visually elicited prey orienting in the frog. I: Effects of various unilateral lesions. Neuroscience 21: 41–55

    Article  CAS  PubMed  Google Scholar 

  • Lara R, Arbib MA, Cromarty AS (1982) The role of the tectal column in facilitation of amphibian prey-catching behavior a neural model. JNeurosci 2: 521–530

    CAS  Google Scholar 

  • Lazar G (1973) Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain Behav Evol 5: 443–460

    Google Scholar 

  • Lr G (1983) Transection of the basal optic root in the frog abolishes vertical optokinetic head-nystagmus. Neurosci Lett 43: 7–11

    Article  Google Scholar 

  • Lr G, Toth P (1983) Optokinetic horizontal head nystagmus in the frog after regeneration of transected retinal fibers. Acta Biol Acad Sci Hung 34: 371–383

    Google Scholar 

  • Lock A, Collett T (1979) A toad’s devious approach to its prey: a study of some complex uses of depth vision. J Comp Physiol 131: 179–189

    Article  Google Scholar 

  • Manteuffel G (1982) The accessory optic system in the newt, Triturus cristatus: unitary response properties from the basal optic neuropil. Brain Behav Evol 21: 175–184

    Article  CAS  PubMed  Google Scholar 

  • Manteuffel G (1984a) Electrophysiology and anatomy of direction-specific pretectal units in Salamandra salamandra. Erp Brain Res 54: 415425

    Google Scholar 

  • Manteuffel G (1984b) A “physiological” model for the salamander horizontal head nystagmus. Brain Behav Evo! 25: 197–205

    Article  CAS  Google Scholar 

  • Manteuffel G (1985) Monocular and binocular optic inputs to salamander pretectal neurons: intracellular recording and HRP labelling study. Brain Behav Evol27: 1–10

    Google Scholar 

  • Manteuffel G (1987) Binocular afferents to the salamander pretectum mediate rotation sensitivity of cells selective for visual background motions. Brain Res422: 381–383

    Google Scholar 

  • Manteuffel G, Naujoks-Manteuffel C (1987) Synergistic visual and vestibular self motion related inputs to the optic tectum of salamanders. Neuroscience Suppl 22: 737

    Google Scholar 

  • Manteuffel G, Petersen J, Himstedt W (1983) Optic nystagmus and nystagmogen centers in the European fire salamander (Salamandra salamandra). Zool Jb Physio187: 113–125

    Google Scholar 

  • Manteuffel G, Kopp J, Himstedt W (1986) Amphibian optokinetic afternystagmus: properties and comparative analysis in various species. Brain Behav Evo! 28: 186–197

    Article  CAS  Google Scholar 

  • Montgomery N, Fite KV, Bengston L (1981) The accessory optic system of Rana pipienn neumanatomical connections and intrinsic organization. J Comp Neuro1203: 595–612

    Google Scholar 

  • Montgomery N,Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens a functional analysis. Brain Behav Evoi 21: 137–150

    Google Scholar 

  • Montgomery N, Fite KV, Grigonis AM (1985) The pretectal nucleus (lentiformis mesencephali) of Rana pipiens. J Comp Neurol 234: 264–275

    Article  CAS  Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1986) Internuclear connections between the pretectum and the accessory optic system in Salamandra salamandra. Cell Tiss Res 243: 595–602

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1987) Afferents to the torus semicircularis in Salamandra salamandra (Amphibia, Urodela). Neurosci Suppl22: 773

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G (1988) The origins of descending projections to the medulla oblongata and rostral medulla spinalis in the urodele Salamandra salamandra (Amphibia). J Comp Neurol273:187–206

    Google Scholar 

  • Naujoks-Manteuffel C, Manteuffel G, Himstedt W (1986) Deszendierende Bahnen aus dem Di-und Mesencephalon des Feuersalamanders (Salamandra salamandra L). Verh Dtsch Zool Ges 79: 373

    Google Scholar 

  • Orban GA, Gulyas B, Vogels R (1987) Influence of a moving textured background on direction selectivity of cat striate neurons. JNeurophysiol57: 1792–1812

    Google Scholar 

  • Rettig G (1984) Neuroanatomische Untersuchungen der visuellen Projektionen bei Salamandern (Ordnung Caudata). PhD Thesis, Univ Bremen

    Google Scholar 

  • Rettig G, Roth G (1986) Retinofugal projections in salamanders of the family Plethodontidae. Cell Tiss Res 243: 385–396

    Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibulo-ocular reflex by the cerebellum. JNeurophysiol39: 954–969

    Google Scholar 

  • Roth G (1982) Beuteerkennungsmechanismen im Tectum opticum von Amphibien–eine vergleichende Untersuchung. Punkt Bio! Med 1: 90–98

    Google Scholar 

  • Roth G (1987) Visual behavior in salamanders. In Braitenberg V (ed) Studies of brain function, Vol 14. Springer Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Simpson JI (1984) The accessory optic system. Ann Rev Neurosci7:13–41

    Google Scholar 

  • Simpson JI, Soodak RE (1978) The accessory optic system: a visual system in vestibular coordinates. Soc Neurosci Abstr4: 645

    Google Scholar 

  • Speri M, Manteuffel G (1987) Directional selectivities of visual afferents to the pretectal neuropil in the fire salamander. Brain Res404: 332–334

    Google Scholar 

  • Springer AD, Easter SS, Agranoff BW (1977) The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res 128: 393–404

    Article  CAS  PubMed  Google Scholar 

  • Stein BE, Gaither NS (1981) Sensory representation in reptilian optic tectum: some comparisons with mammals. J Comp Neural202: 69–87

    Google Scholar 

  • Tauber ES, Atkin A (1968) Optomotor responses to monocular stimulation: relation to visual system organization. Science 160: 1365–1367

    Article  CAS  PubMed  Google Scholar 

  • Taylor AM, Jeffery G, Lieberman AR (1986) Subcortical afferent and efferent connections of the superior colliculus in the rat and comparisons between albino and pigmented strains. Pap Brain Res 62: 131142

    Google Scholar 

  • Tsai HJ, Ewert J-P (1987) Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant “position-indicators”. J Comp Physio! 161: 295–304

    Article  CAS  Google Scholar 

  • Tsai HI, Ewert J-P (1988) Influence of stationary and moving background structures on the response of visual neurons in toads (Bufo bufo). Brain Behav Evo! (in press)

    Google Scholar 

  • Wilczynski W (1981) Afferents to the midbrain auditory center in the bullfrog, Rana catesbeiana. J Comp Neural 198: 421–433

    Article  CAS  Google Scholar 

  • Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neural 173: 219–230

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Manteuffel, G. (1989). Compensation of Visual Background Motion in Salamanders. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics