Skip to main content

In Search of the Motor Pattern Generator for Snapping in Toads

  • Chapter

Abstract

The hypothesis that a neuronal network interposed between the output elements of the optic tectum, and hypoglossal and other cranial motoneurons subserves ballistic snapping in anurans is critically examined. Morphological and electrophysiological data have not revealed a direct monosynaptic connection between the optic tectum and hypoglossal motoneurons. On the contrary, the available evidence supports the presence of interneurons mediating impulse traffic from the tectum to cranial motoneurons. It is argued that these interneurons are part of a motor pattern generator (MPG). The afferent connections of the bulbar reticular formation (RetF) and the hypoglossal nucleus were studied using the horseradish peroxidase method. The results substantiate the hypothesis that a vital component of the neural substrate for snapping generation is located in the medial RetF (MRF), has access to the motoneurons relevant for snapping, and receives inputs from the tectum and the torus semicircularis. Bilateral tectal and toral inputs to MRF suggest that the MPG consists of two unilateral subunits each having independent access to the relevant motoneurons. This is consistent with the observations that toads with unilateral tectal, or medullary lesions are still capable of snapping. Connections between the nucleus of the solitary tract and the hypoglossal nucleus may be important for elementary bulbar reflexes and manipulation of prey within the mouth. Interconnections between hypoglossal nucleus and other craniomotor nuclei might play a role in the coordination of tongue and jaw musculature necessary for precise timing of the ballistic snapping movement. From a review of the available evidence, a more detailed scheme of the MPG is proposed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbib MA (1988) Levels of modelling of mechanisms of visually guided behavior. Behaw Brain Sci 10 (in press)

    Google Scholar 

  • Bieger D, Neuman RS (1984) Selective accumulation of hydroxytroptamines by frog tectal neurons. Neurosci 12: 1167–1177

    Article  CAS  Google Scholar 

  • Bloom FE (1979) Chemical integrative processes in the central nervous system. In: Schmidt FO, Worden FG (eds) The neurosciences: fourth study program. MIT Press, Cambridge Mass

    Google Scholar 

  • Braak H (1970) Biogene Amine im Gehirn vom Frosch (Rana esculenta). Z Zellforsch 106: 269–308

    Article  CAS  Google Scholar 

  • Brenowitz GL, Collins WF Jr, Erulkar SD (1983) Dye and electrical coupling between frog motoneurons. Brain Res 274: 371–375

    Article  PubMed  CAS  Google Scholar 

  • Brookhart JM, Fadiga E (1960) Potential fields initiated during monosynaptic activation of frog motoneurones. JPhysiol (Lond)150: 633–655

    Google Scholar 

  • Burghagen H (1979) Der Einfluß von figuralen visuellen Mustern auf das Beutefangverhalten verschiedenerAnuren. Ph.D. Thesis, Univ Kassel

    Google Scholar 

  • Cajal SR y (1909) Histologie du Systeme nerveux de f homme et des vertebres Maloine, Paris

    Google Scholar 

  • Cardona A, Rudomin P (1983) Activation of brain stem serotonergic pathways decreases homosynaptic depression of monosynaptic responses of frog spinal motoneurons. Brain Res 280: 373–378

    Article  PubMed  CAS  Google Scholar 

  • Comer C, Grobstein P (1981a) Tactually elicited prey acquisition behavior in the frog, Rana pipiens, and a comparison with visually elicited behavior. J Comp Physiol 142: 141–150

    Article  Google Scholar 

  • Comer C, Grobstein P (1981b) Involvement of midbrain structure in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens J Comp Physio1142: 151–160

    Google Scholar 

  • DeOlmos J, Heimer L (1977) Mapping of collateral projections with the HRP method. Neurosci Lett 6: 107–114

    Article  CAS  Google Scholar 

  • Dole JW, Rose BB, Tachiki KH (1981) Western toads (Bufo boreas) learn odor of prey insects. Herpetologica 37: 63–68

    Google Scholar 

  • Doty RW, Richmond WH, Storey AT (1967) Effect of medulla lesions on coordination of deglutition. Pxp Neuro 17: 91–106

    CAS  Google Scholar 

  • Ebbesson SOE, Hansel M, Scheich H (1981) An ‘on the slide’ modification of the DeOlmos-Heimer HRP method. NeurasciLett22: 1–4

    Google Scholar 

  • Eikmanns K-H (1955) Verhaltensphysiologische Untersuchungen fiber den Beutefang and das Bewegungssehen der Erdkröte (Bufo bufo L). Z Tierpsychol 12: 229–253

    Article  Google Scholar 

  • Ewert J-P (1967) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L) durch elektrische Mittelhirnreizung. Z Vergl Physiol54: 455–481

    Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-and Fluchtverhalten der Erdkröte (Bufo bufo). Z Vergi Physiol 61: 41–70

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In:

    Google Scholar 

  • Vanegas H (ed) Comparative neurology of the optic tectum Plenum Press, New York, pp 247–416

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405

    Article  Google Scholar 

  • Ewert J-P, Schfirg-Pfeiffer E, Weerasuriya A (1984a) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Naturwissenschaften 71: 590–591

    Article  PubMed  CAS  Google Scholar 

  • Ewert J-P, Finkenstädt T, Weerasuriya A (1984b) Concepts for neuronal correlates of Gestalt perception: visual prey recognition in toads. In: Aoki K, Ishii S, Morita H (eds) Animal behavior, neurophysiological and ethological approaches. Japan Scientific Soc Press, Tokyo, pp 137–159

    Google Scholar 

  • Feldman JL (1986) Neurophysiology of respiration in mammals. In: Bloom FE (ed) Handbook of physiology. The nervous system. Intrinsic regulatory systems of the brain. American Physiological Society, Bethesda pp 463–524

    Google Scholar 

  • Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of 14C–2DG autoradiographs. J Comp Physiol156: 433–445

    Google Scholar 

  • Fuchs AF, Kaneko CRS (1985) A brain stem generator for saccadic eye movements. In: Evarts EV, Wise SP, Bousfield D (eds) The motor system in neurobiology. Elsevier Biomedical Press, Amsterdam New York Oxford, pp 126–132

    Google Scholar 

  • Gans C (1961) The bullfrog and its prey. Nat Hist70: 26–37

    Google Scholar 

  • Gans C, Gorniak GC (1982a) Functional morphology of lingual protrusion in marine toads (Bufo manrnus). Amer JAnat 163: 195–222

    CAS  Google Scholar 

  • Gans C, Gorniak GC (1982b) How does the toad flip its tongue? Test of two hypotheses. Science 216: 13351337

    Google Scholar 

  • Gaupp E (1899) A Lckei’s and R Wiedersheim’s Anatomic des Frosches. Vieweg and Sohn, Braunschweig

    Google Scholar 

  • Gladen S (1984) Der Einfluß derApomorphindosis auf das Beutefangverhalten and auf die reizspezifische Gewöhnung bei Erdkröten. Staatsexam Thesis, Univ Kassel

    Google Scholar 

  • Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology. The nervous system. Motor control. American Physiological Society, Bethesda, pp 11791236

    Google Scholar 

  • Grobstein P, Comer C, Kostyk SK (1983) Frog prey capture: between sensory maps and directed motor output. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 331–347

    Chapter  Google Scholar 

  • Hinsche G (1935) Ein Schnappreflex nach “Nichts” bei Anuren. Zool Anz 111: 113–122

    Google Scholar 

  • Hobson JA, Scheibel AB (eds) (1980) The brain stem core: senson’motorintegration and behavioral state control. Neuroscience research program bulletin Vol 18. MIT Press, Cambridge Mass

    Google Scholar 

  • Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR

    Google Scholar 

  • Ingle DJ (eds) Advances in vertebrate neuroethology Plenum Press, New York, pp 177–226

    Google Scholar 

  • Ito M (1986) Neural systems controlling movement. T7NS9: 515–518

    Google Scholar 

  • Jean A (1984) Brainstem organization of the swallowing network. Brain Behav Evol25: 109–116

    Google Scholar 

  • Kaneko CRS, Ewinger C, Fuchs AF (1981) Role of cat pontine burst neurons in generating of saccadic eye movements. JNeurophysiol46: 387–408

    Google Scholar 

  • Kicliter E (1973) Flux wavelength and movement discrimination in frogs: forebrain and midbrain contributions. Brain Behav Evo! 8: 340–365

    Article  CAS  Google Scholar 

  • Kostyk SK, Grobstein P (1987) Neuronal organization underlying visually elicited prey orienting in the frog. II: Anatomical studies on the laterality of central projections. Neurosci 21: 57–82

    Article  CAS  Google Scholar 

  • Kramer EB, Rath T, Lischka MF (1979) Somatotopic organization of the hypoglossal nucleus: HRP study in the rat. Brain Res 170: 533–537

    Article  Google Scholar 

  • Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1: 3–39

    Article  Google Scholar 

  • Landgren S, Olsson KA, Westberg KG (1986) Bulbar neurones with axonal projections to the trigeminal motor nucleus in the cat. Erp Brain Res 65: 98–111

    CAS  Google Scholar 

  • Lázár G (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung20: 171–183

    Google Scholar 

  • Lázár G, Toth P, Csank G, Kicliter E (1983) Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt-filling. J Comp Neuro 215: 108–120

    Article  Google Scholar 

  • Maeda M. Magherini PC, Precht W (1977) Functional organization of vestibular and visual inputs to neck and forelimb motoneurons in the frog. J Neurophysiol 40: 225–243

    PubMed  Google Scholar 

  • Matesz C, Székely G (1977) The dorsomedial nuclear group of cranial nerves in the frog. Acta Biol Acad Sci Hung28: 461–474

    Google Scholar 

  • Matsushima T, Satou M, Ueda K (1986) Glossopharyngeal and tectal influences on tongue muscle motoneurons in the Japanese toad. Brain Res 265: 198–203

    Article  Google Scholar 

  • Nieuwenhuys R, Opdam P (1976) Structure of the brain stem. In: Llinds R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 811–855

    Chapter  Google Scholar 

  • Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 203–255

    Chapter  Google Scholar 

  • Nozaki S, Enomoto S, Nakamura Y (1983) Identification and input-output properties of bulbar reticular neurons involved in the cerebral cortical control of trigeminal motoneurons in the cat. Exp Brain Res 49: 363–372

    Article  PubMed  CAS  Google Scholar 

  • Olsson KA, Landgren S, Westberg KG (1986) Location of and peripheral convergence on the interneurone in the disynaptic path from the coronal gyros of the cerebral cortex to the trigeminal motoneurones in the cat. Erp Brain Res 65: 83–97

    CAS  Google Scholar 

  • Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol165: 307–331

    Google Scholar 

  • Parent A (1973) Distribution of monamine-containing neurons in the brain stem of the frog, Rana temporaria. JMorph 139: 67–78

    CAS  Google Scholar 

  • Porter R (1965) Synaptic potentials in hypoglossal motoneurones. JPhysiol (London)180: 209–244

    Google Scholar 

  • Quick I (1984) Auswirkungen von Apomurphin auf die visuelle Mustereliskiiminationstâhigkeit and die Beutefangmotivation bei Erdkröten. Staatsexam Thesis, Univ Kassel

    Google Scholar 

  • Robinson DA (1981) Control of eye movements. In: Books VB (ed) Handbook of Physiology. The nervous systems. Motor control. American Physiological Society, Bethesda, pp 1275–1320

    Google Scholar 

  • Rubinson K (1968) Projections of the tectum opticum of the frog. Brain Behav Evol1: 529–561

    Google Scholar 

  • Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad Bufo bufo (L). J Comp Physiol 157: 739–748

    Article  CAS  Google Scholar 

  • Satou M, Matsushima T, Takeuchi H, Ueda K (1985) Tongue-muscle controlling motoneurons in the Japanes toad: topography, morphology, and neuronal pathways from the ‘snapping evoking area’ in the optic tectum. J Comp Physio1157: 717–737

    Google Scholar 

  • Schmidt RS (1976) Neural correlates of frog calling. Isolated brainstem. J Comp Physiol 108: 99–114

    Article  Google Scholar 

  • Schmidt RS (1984) Neural correlates of frog calling: preoptic area trigger of ‘mating calling’. J Comp Physiol 154: 847–853

    Article  Google Scholar 

  • Schneider D (1954) Das Gesichtsfeld and der Fixiervorgang bei einheimischen Anuren. Z Vergl Physiol36: 147–164

    Google Scholar 

  • Shinn EA, Dole JW (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs, Rana pipiens. Herpetologica 34: 167–172

    Google Scholar 

  • Sailer RW (1977) Monoaminergic inputs to frog motoneurons: an anatomical study using fluorescence histochemical and silver degeneration techniques. Brain Res 122: 445–458

    Article  Google Scholar 

  • Stuesse SL, Cruce WLR, Powell KS (1983) Afferent and efferent components of the hypoglossal nerve in the grass frog. J Comp Neural 217: 432–439

    Article  CAS  Google Scholar 

  • Sumi T (1969) Synaptic potentials of hypoglossal motoneurons and their relation to reflex deglutition. Jap J Physiol 19: 68–79

    Article  CAS  Google Scholar 

  • Székely G, L izâr G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434

    Chapter  Google Scholar 

  • Székely G, Levai G, Matesz K (1983) Primary afferent terminals in the nucleus of the solitary tract of the frog: an electron microsopic study. Exp Brain Res 53: 109–117

    Article  PubMed  Google Scholar 

  • Uemura-Sumi M, Mizuno N, Iwahori N, Tackeuchi Y, Matsushima R (1981) Topographical representation of the hypoglossal nerve branches and tongue muscles in the hypoglossal nucleus of macaque monkeys. Neurosci Lett 22: 31–35

    Article  PubMed  CAS  Google Scholar 

  • Weerasuriya A (1983) Snapping in toads: some aspects of sensorimotor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 613–627

    Chapter  Google Scholar 

  • Weerasuriya A (1988) Effect of medullary lesions and hypoglossal nerve transections on snapping in toads (in preparation)

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toads optic tectum and sensori-motor interfacing: HRP studies and recording experiments. J Comp Physiol 144: 429–434

    Article  Google Scholar 

  • Weerasuriya A, Ewert J-P (1984) Afferents of the hypoglossal nucleus in the common European toad, Bufo bufa Amer Ass Anat Abstr1984: 192A

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1988) Afferents of the hypoglossal nucleus in the toad, Bufo bufo (submitted)

    Google Scholar 

  • Westerfield M, Frank E (1982) Specificity of electrical coupling among neurons innervating forelimb muscles of the adult bullfrog. JNeurophysiol48: 904–913

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Weerasuriya, A. (1989). In Search of the Motor Pattern Generator for Snapping in Toads. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics