Advertisement

Role of Immunotherapy in Preventing and Managing Postirradiation Infections

  • Richard I. Walker

Abstract

Infection is the single most important complication of otherwise survivable exposures to radiation. For example, in mice given an LD50 of radiation,1 the animals that develop infections are the ones that die. These infections, which are often of enteric origin, are not seen in mice that survive the exposure.

Keywords

Radiation Injury Combine Injury Nonspecific Resistance Listeria Monocytogenes Infection Anaerobic Flora 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Miller, C. P., Hammond, C. W., and Tompkins, M. The incidence of bacteria in mice subjected to whole-body x-radiation. Science 3: 540–551, 1950.CrossRefGoogle Scholar
  2. 2.
    van der Waaij, D., Berghuis-de Vries, J. M., and Lekkerkerk-van der Wees, J. E. C. Colonization resistance of the digestive tract and spread of bacteria to the lymphatic organs of mice. J Hyg 70: 335–342, 1972.Google Scholar
  3. 3.
    Song, M., and DiLuzio, N. R. Yeast glucan and immunotherapy of infectious diseases. In: Lysosomes in Applied Biology. J. T. Dingle, P. J. Jacques, and I. H. Shaw, Eds. Elsevier North Holland, Amsterdam, 1979, pp. 533–547.Google Scholar
  4. 4.
    Patchen, M. L., D’Alesandro, M. M., Brook, I., et al. Glucan: Mechanisms involved in its “radioprotective” effect. J Leukocyte Biol 42: 95–105, 1987.Google Scholar
  5. 5.
    Patchen, M. L., MacVittie, T. J., and Jackson, W. E. Postirradiation glucan administration enhances the radioprotective effects of WR-2721. Radiat Res 117: 59–69, 1989.PubMedCrossRefGoogle Scholar
  6. 6.
    Madonna, G. S., Ledney, G. D., Elliott, T. B., et al. Trehalose dimycolate enhances resistance to infection in neutropenic animals. Infect Immun 57: 2495–2501, 1989.PubMedGoogle Scholar
  7. 7.
    Donati, R. M., McLaughlin, M. M., and Stromberg, L-W. R. Combined surgical and radiation injury. VIII. The effect of the gnotobiotic state on wound closure. Experientia 29: 1388–1390, 1973.PubMedCrossRefGoogle Scholar
  8. 8.
    Matsumoto, M., Matsubara, S., Matsuno, T., et al. Protective effect of human granulocyte colony-stimulating factor on microbial infection in neutropenic mice. Infect Immun 55: 2715 2720, 1987.Google Scholar
  9. 9.
    Minami, A., Fujimoto, K., Ozaki, Y., etal. Augmentation of host resistance to microbial infections by recombinant human interleukin-la. Infect Immun 56: 3116–3120, 1988.PubMedGoogle Scholar
  10. 10.
    Nakane, A., Minagawa, T., and Kato, K. Endogenous tumor necrosis factor (cachectin) is essential to host resistance against Listeria monocytogenes infection. Infect Immun 56: 2563–2569, 1988.Google Scholar
  11. 11.
    Tracey, K. J., Fong, Y., Hesse, D. G., et al. Anti-cachectin/TNF monoclonal antibodies prevent septic shock during lethal bacteremia. Nature 330: 662–664, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Porvaznik, M., Walker, R. I., and Gillmore, J. D. Reduction of the indigenous filamentous microorganisms in rat ilea following gamma-radiation. Scan Electron Microsc 3: 15–22, 1979.PubMedGoogle Scholar
  13. 13.
    Sneller, M. C., and Strober, W. M cells and host defense. J Infect Dis 154: 737–741, 1986.PubMedCrossRefGoogle Scholar
  14. 14.
    MacDonald, T. T., Bashore, M., and Carter, P. B. Nonspecific resistance to infection expressed within the Peyer’s patches of the small intestine. Infect Immun 37: 390–392, 1982.PubMedGoogle Scholar
  15. 15.
    Walker, R. I., Schmauder-Chock, E. A., Parker, J. L., et al. Selective association and transport of Campylobacter jejuni through M cells of rabbit Peyer’s patches. Can J Microbiol 34: 1142 1147, 1988.Google Scholar
  16. 16.
    Kohbata, S., Yokoyama, H., and Yabuuchi, E. Cytopathogenic effect of Salmonella typhi GI FU 10007 on M cells of murine ileal Peyer’s patches in ligated ileal loops: An ultrastructural study. Microbiol Immunol 30: 1225–1237, 1986.PubMedGoogle Scholar
  17. 17.
    Inman, L. R., and Cantey, J. R. Specific adherence of Escherichia coli (strain RDEC-1) to membranous (M) cells of the Peyer’s patch in Escherichia coli diarrhea in the rabbit. J Clin Invest 71: 1–8, 1983.PubMedCrossRefGoogle Scholar
  18. 18.
    Owen, R. L., Pierce, N. F., Apple, R. J., et al. M cell transport of Vibrio cholerae from the intestinal lumen into Peyer’s patches: A mechanism for antigen sampling and for microbial transepithelial migration. J Infect Dis 153: 1108–1118, 1986.PubMedCrossRefGoogle Scholar
  19. 19.
    Wassef, J. S., Keren, D. F., and Mailloux, J. L. Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect Immun 57: 858863, 1988.Google Scholar
  20. 20.
    Wells, C. L., Maddaus, M. A., and Simmons, R. L. Proposed mechanisms for the translocation of intestinal bacteria. Rev Infect Dis 10: 958–979, 1988.PubMedCrossRefGoogle Scholar
  21. 21.
    Wells, C. L., Maddaus, M. A., Erlandsen, S. L., et al. Evidence for the phagocytic transport of intestinal particles in dogs and cats. Infect Immun 56: 278–282, 1988.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Richard I. Walker
    • 1
  1. 1.Infectious Diseases DepartmentNaval Medical Research InstituteBethesdaUSA

Personalised recommendations