Skip to main content

Performance of Biodegradative Microorganisms in Soil: Xenobiotic Chemicals as Unexploited Metabolic Niches

  • Chapter
Book cover Environmental Biotechnology

Part of the book series: Basic Life Sciences ((BLSC,volume 45))

Abstract

Microorganisms are where they are because there is a food source or a metabolic niche to exploit. The word “niche,” as derived from the old French nicher (i.e., “to nest”), has been synonymous in rnacroecology to location or habitat. In microbial ecology, niche refers to function rather than location. This is particularly significant with respect to bacteria, since the basic principle of nutritional selection has been used for isolating them from soil since the time of Beijerinck and Winogradsky a century ago. Reduced to basic simplicity, nutrition is the single most powerful selection force in microbial ecology in the absence of extreme environments. The microorganisms that are the best fitted for exploiting the metabolic niches of the environment are the ones that comprise the microbial community in accordance with Darwinian principles of natural selection. Thus, cellulitic fungi and proteolytic bacteria co-exist side by side spatially, while exploiting different niches, and can be isolated exclusively from each other on different selective media. The vast diversity of metabolic niches ranges in simplicity from ammonium to large, uncharacterized macromolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmed, M., and D.D. Focht (1973) Degradation of polychlorinated biophenyls by two species of Achromobacter. Can. J. Microbiol. 19:47–52.

    Article  PubMed  CAS  Google Scholar 

  2. Alexander, M. (1965) Biodegradation: Problems of molecular recalcitrance and microbial fallibility. Adv. Appl. Microbiol. 7:35–76.

    Article  PubMed  CAS  Google Scholar 

  3. Alexander, M. (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138.

    Article  PubMed  CAS  Google Scholar 

  4. Barles, R.W., C.G. Daughton, and D.P.H. Hsieh (1979) Accelerated parathion degradation on soil inoculated with acclimated bacteria under field conditions. Arch. Environ. Contam. Toxicol. 8:647–660.

    Article  PubMed  CAS  Google Scholar 

  5. Beam, H.W., and J.J. Perry (1974) Microbial degradation of cycloparaffine hydrocarbons via cometabolism and commensalism. J. Gen. Microbiol. 83:163–169.

    Google Scholar 

  6. Bedard, D.L., R.E. Wagner, M.J. Brennan, M.L. Haberl, and J.F. Brown, Jr. (1987) Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53:1094–1102.

    PubMed  CAS  Google Scholar 

  7. Bitton, G., and C.P. Gerba (1984) Groundwater pollution microbiology: The emerging issue. In Groundwater Pollution Microbiology, G. Bitton and C.P. Gerba, eds. John Wiley and Sons, New York, pp. 1–8.

    Google Scholar 

  8. Brown, Jr., J.F., R.E. Wagner, D.L. Bedard, M.J. Brennan, J.C. Carnahan, R.J. May, and T.J. Tofflemire (1984) PCB transformations in upper Hudson sediments. Northeast Environ. Sci. 3:167–179.

    CAS  Google Scholar 

  9. Brunner, W., F.H. Sutherland, and D.D. Focht (1985) Enhanced biodegradation of polychlorinated biphenyls in soil by analog enrichment. J. Environ. Qual. 14:324–328.

    Article  CAS  Google Scholar 

  10. Chatterjee, D.K., J.J. Kilbane, and A.M. Chakrabarty (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid in soil by a pure culture of Pseudomonas cepacia. Appl. Environ. Microbiol. 44:514–516.

    PubMed  CAS  Google Scholar 

  11. Crawford, R.L., and W.W. Mohn (1985) Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb. Technol. 7:617–620.

    Article  CAS  Google Scholar 

  12. Dagley, S. (1984) Introduction. In Microbial Degradation of Organic Compounds, D.T. Gibson, ed. Marcel Dekker, Inc., New York, pp. 1–11.

    Google Scholar 

  13. DeBont, J.A.M., M.J.A.W. Vorage, S. Hartmans, and W.J.J. van den Tweel (1986) Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52:677–680.

    CAS  Google Scholar 

  14. Dimond, J.B., G.Y. Belyea, R.E. Kadunce, A.S. Getchell, and J.A. Blease (1970) DDT residues in robins and earthworms associated with contaminated forest soils. Canadian Entomologist 102:1122–1130.

    Article  CAS  Google Scholar 

  15. Focht, D.D. (1972) Microbial degradation of DDT metabolites to carbon dioxide, water, and chloridae. Bull. Environ. Contam. Toxicol. 7:52–56.

    Article  PubMed  CAS  Google Scholar 

  16. Focht, D.D. (1987) Ecological and evolutionary considerations on the metabolism of xenobiotic chemicals in soil. In Future Developments in Soil Science Research, American Society of Agronomy, Madison, Wisconsin, pp. 157–167.

    Google Scholar 

  17. Focht, D.D., and M. Alexander (1971) Aerobic cometabolism of DDT analogues by Hydrogenomonas sp. J. Agric. Food Chem. 19:20–22.

    Article  PubMed  CAS  Google Scholar 

  18. Focht, D.D., and W. Brunner (1985) Kinetics of biphenyl and polychlorinated biphenyl metabolism in soil. Appl. Environ. Microbiol. 50:1058–1063.

    PubMed  CAS  Google Scholar 

  19. Focht, D.D., and D. Shelton (1987) Growth kinetics of Pseudomonas alcaligenes C-O relative to inoculation and 3-chlorobenzoate metabolism in soil. App1. Environ. Microbiol. (in press).

    Google Scholar 

  20. Fogel, S., R.L. Lancione, and A.E. Sewall (1982) Enhanced biodegradation of methoxychlor in soil under sequential environmental conditions. Appl. Environ. Microbiol. 44:113–120.

    PubMed  CAS  Google Scholar 

  21. Furukawa, K.N., N. Tomizuka, and A. Kamibayashi (1979) Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38:301–310.

    PubMed  CAS  Google Scholar 

  22. Gale, E.F. (1952) The Chemical Activities of Bacteria, Academic Press, London.

    Google Scholar 

  23. Guenzi, W.D., and W.E. Beard (1967) Anaerobic biodegradation of DDT to DDD in soil. Science 156:1116–1117.

    Article  PubMed  CAS  Google Scholar 

  24. Horvath, R.S. (1972) Microbial cometabolism and the degradation of organic compounds in nature. Bacteriol. Rev. 36:146–155.

    PubMed  CAS  Google Scholar 

  25. Jensen, H.L. (1963) Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids. Acta Agr. Scand. 13:404–412.

    Article  CAS  Google Scholar 

  26. Kaufman, D. (1985) Microbial adaptation and metabolism of pesticides. In Agricultural Chemicals of the Future (BARC Symposium 8), J.L. Hilton, ed. Rowman and Allanheld, Totawa, New Jersey, pp. 437–451.

    Google Scholar 

  27. Kellogg, S.T., D.K. Chatterjee, and A.M. Chakrabarty (1982) Plasmid-assisted molecular breeding: New technique for enhanced biodegradation of persistent toxic chemicals. Science 214:1133–1135.

    Article  Google Scholar 

  28. Kilbane, J.J., D.K. Chatterjee, J.S. Karns, S.T. Kellogg, and A.M. Chakrabarty (1983) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl. Environ. Microbiol. 33:72–78.

    Google Scholar 

  29. Kröckel, L., and D.D. Focht (1987) Construction of chlorobenzeneutilizing recombinants by progenitive manifestation of a rare event. Appl. Environ. Microbiol. (in press).

    Google Scholar 

  30. Leadbetter, E.R., and J.W. Foster (1959) Oxidation products formed from gaseous alkanes by the bacterium Pseudomonas methanica. Arch. Biochem. Biophys. 82:491–492.

    Article  PubMed  CAS  Google Scholar 

  31. Lipman, J.G. (1908) Bacteria in Relation to Country Life, Macmillan, New York.

    Book  Google Scholar 

  32. Nielsen, D.R., J.W. Biggar, and K.T. Erh (1973) Spatial variability of field-measured soil-water properties. Hilgardia 43:215–259.

    Google Scholar 

  33. Pfaender, F.K., and M. Alexander (1972) Extensive microbial degradation of DDT in vitro and DDT metabolism by natural communities. J. Agric. Food Chem. 20:842–846.

    Article  PubMed  CAS  Google Scholar 

  34. Reineke, W. (1984) Microbial degradation of halogenated aromatic compounds. In Microbial Degradation of Organic Compounds, D.T. Gibson, ed. Marcel Dekker, Inc., New York, pp. 319–360.

    Google Scholar 

  35. Reineke, W., and H.-J. Knackmuss (1984) Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47:395–402.

    PubMed  CAS  Google Scholar 

  36. Schraa, G., M.L. Boone, M.S.M. Jetten, A.R.W. vanNeerven, P.J. Colberg, and A.J.B. Zehnder (1986) Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52:1374–1381.

    PubMed  CAS  Google Scholar 

  37. Slater, J.H., and D. Lovatt (1984) Biodegradation and the significance of microbial communities. In Microbial Degradation of Organic Compounds, D.T. Gibson, ed. Marcel Dekker, Inc., New York, pp. 439–485.

    Google Scholar 

  38. Spain, J.C., and S.F. Nishino (1987) Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53:1010–1019.

    PubMed  CAS  Google Scholar 

  39. Starc, S.A. (1942) Mikrobiologische Untersuchungen einiger podsoliger Boden Kroatiens. Arch. Mikrobiol. 12:329–352.

    Article  Google Scholar 

  40. Waksman, S.A. (1916) Bacteria numbers in soils at different depths, and in different seasons of the year. Soil Sci. 1:363–380.

    Article  CAS  Google Scholar 

  41. Watanabe, T. (1963) Infective heredity of multiple drug resistance in bacteria. Bacteriol. Rev. 27:87–115.

    PubMed  CAS  Google Scholar 

  42. Wedemeyer, G. (1967) Biodegradation of dichlorodiphenyltrichloroethane: Intermediates in dichlorophenylacetic acid metabolism by Aerobacter aerogenes. Appl. Microbiol. 15:1494–1495.

    PubMed  CAS  Google Scholar 

  43. Wedemeyer, G. (1967) Dechlorination of 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane by Aerobacter aerogenes. Appl. Microbiol. 15:569–574.

    PubMed  CAS  Google Scholar 

  44. Wesseling, J., and W.R. van Wijk (1957) Land drainage in relation to soils and crops: I. Soil physical conditions in relation to drain depth. In Drainage of Agricultural Lands, L.N. Luthin, ed. American Society of Agronomy, Madison, Wisconsin, pp. 461–504.

    Google Scholar 

  45. Wollman, E.L., F. Jacob, and W. Hayes (1956) Conjugation and genetic recombination in Escherichia coli K-12. In Papers on Bacterial Genetics, E.A. Adelberg, ed. Little, Brown and Company, Boston, pp. 300–333.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Focht, D.D. (1988). Performance of Biodegradative Microorganisms in Soil: Xenobiotic Chemicals as Unexploited Metabolic Niches. In: Omenn, G.S. (eds) Environmental Biotechnology. Basic Life Sciences, vol 45. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0824-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0824-7_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0826-1

  • Online ISBN: 978-1-4899-0824-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics