Advertisement

A Configuration Interaction (CI) Description of Vectorial Electron Transfer in Bacterial Reaction Centres

  • M. Plato
  • C. J. Winscom
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

The purpose of this communication is to report a CI method for calculating the electronic matrix elements between the various prosthetic groups of a bacterial reaction centre (RC), relevant for estimating the electron transfer (ET) rate in the primary charge-separation step. Although we will focus on just the elements required to estimate the ET rate for the “super-exchange” model1, the underlying procedure may be used quite generally to determine the energy ordering of the various local and charge-transfer excited states of a molecular aggregate, such as a bacterial RC. It offers a theoretical framework for investigating quite diverse optical properties of the aggregate such as, for example, Stark effects.

Keywords

Configuration Interaction Full Configuration Interaction Bacterial Reaction Centre Configuration Interaction Method Electron Repulsion Integral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Bixon, J. Jortner, M. E. Michel-Beyerle, A. Ogrodnik and W. Lersch, Chem.Phys.Lett. 140: 626 (1987).CrossRefGoogle Scholar
  2. 2.
    J. N. Murrel, J.Am.Chem.Soc. 81:5037 (1959).CrossRefGoogle Scholar
  3. 3.
    C. J. Winscom and M. Plato, to be published.Google Scholar
  4. 4.
    J. C. Slater, Phys.Rev. 34:1293 (1929).CrossRefGoogle Scholar
  5. 5.
    L. Brillouin, Actualités sci, et ind. 71 (1933), 159 (1934).Google Scholar
  6. 6.
    R. S. Mulliken, J.Chim.Phys. 46:497 (1949).Google Scholar
  7. 7.
    M. Plato, E. Tränkle, W. Lubitz, F. Lèndzian and K. Möbius, Chem. Phys. 107: 185 (1986).CrossRefGoogle Scholar
  8. 8.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel, J.Mol. Biol. 180:385 (1984).PubMedCrossRefGoogle Scholar
  9. J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel Nature 318: 618 (1985).PubMedCrossRefGoogle Scholar
  10. 9.
    M. Plato, F. Lendzian, W. Lubitz, E. Tränkle, and K. Möbius, in these Proceedings.Google Scholar
  11. 10.
    J. Breton, J.-L. Martin, A. Migus, A. Antonetti and A. Orszag, Proc.Natl.Acad.Sci. USA 83: 5121 (1986).PubMedCrossRefGoogle Scholar
  12. 11.
    S. F. Fischer, P. O. J. Scherer, Chem.Phys. 115: 151 (1987).CrossRefGoogle Scholar
  13. 12.
    J. Jortner and M. E. Michel-Beyerle, in: “Antennas and reaction centers of photosynthetic bacteria,” M. E. Michel-Beyerle, ed., Springer, Berlin (1985) p. 344.Google Scholar
  14. 13.
    H. Kuhn, Phys.Rev. A34:3409 (1986).Google Scholar
  15. 14.
    G. J. Burns, J.Chem.Phys. 41:1521 (1964).CrossRefGoogle Scholar
  16. 15.
    A. Warshel and W. W. Parson, J.Am.Chem.Soc. 109:6143 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • M. Plato
    • 1
  • C. J. Winscom
    • 1
  1. 1.Institut für Molekülphysik, Fachbereich PhysikFreie Universität BerlinBerlin 33West Germany

Personalised recommendations