Advertisement

The Neutral Level of Si-SO2 Interface States

  • Sanjay Jain

Abstract

From measurements of the temperature dependence of barrier height in Cr — SiO2 — n—Si structures, we have determined the oxide charge, the charge and density of Si — SiO2 interface states, and the position of their neutral level. A negative oxide charge is observed which is attributed to acceptor-type states in the oxide populated by tunneling electrons. The extracted interface state density agrees with other techniques and the high temperature data support trap-assisted tunneling as the dominant recombination mechanism of holes in weak inversion. The neutral level is found 0.1 ± 0.07 eV above midgap of silicon. This is consistent with a distribution of donor states above and acceptor states below the midgap level.

Keywords

Barrier Height Interface State Oxide Thickness Interface Charge Oxide Charge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. M. Sze, Physics of Semiconductor Devices ( Wiley-Interscience, New York, (1981).Google Scholar
  2. [2]
    S. G. Davison and J. D. Levine, in Solid Sate Physics voL 25, edited by H. Ehrenreich, F. Seitz, and D. Turnbull ( Academic, New York, 1970 ).Google Scholar
  3. [3]
    T. Sugano, in Insulating Filins on Semiconductors - Proc. of INFOS 83, edited by J. F. Verweij and D. R. Wolters ( Elsevier Science, Amsterdam, 1983 ).Google Scholar
  4. [4]
    J. Bardeen, Phys. Rev. B 71, 717 (1947).CrossRefGoogle Scholar
  5. [5]
    A. M. Cowley and S. M. Sze, J. AppL Phys. 36, 3212 (1965).CrossRefGoogle Scholar
  6. [6]
    M. J. Turner and E. H. Rhoderick, Solid-St. Electron. 16, 513 (1973).CrossRefGoogle Scholar
  7. [7]
    K. Ghosh and N. K. D. Chowdhary, hit. J. Electron. 54, 615 (1983).CrossRefGoogle Scholar
  8. [8]
    E. H. Rhoderick, Metal-Semiconductor Contacts ( Clarendon Press, Oxford, 1978 ).Google Scholar
  9. [9]
    A. Goetzberger, E. Klausman n and M. Schulz, CRC Crit. Rev. Solid St. Sci. 6, 1.Google Scholar
  10. [10]
    E. H. Poindexter, P. J. Caplan, N. M. Johnson, D. K. Biegelson, M. D. Moyer and S. T. Chang, in Insulating Films on Semiconductors - Proc. of INFOS 83, edited by J. F. Verweij and D. R. Wolters ( Elsevier Science, Amsterdam, 1983 ).Google Scholar
  11. [11]
    S. Jain, Elecarochem Soc. Mtg. Extended Abstract No. 250, Atlanta, May 1988.Google Scholar
  12. [12]
    M. Knoll, D. Braiinig and W. R. Fahrner, in Insulating Films on Semiconductors - Proc. of INFOS 83, edited by J. F. Verweij and D. R. Wolters ( Elsevier Science, Amsterdam, 1983 ).Google Scholar
  13. [13]
    M. Knoll, D. Braiinig and W. R. Fahrner, IEEE Trans. Nuc. Sei. NS29, 1471 (1982).Google Scholar
  14. [14]
    S. Kar, Solid-St. Electron. 18, 169 (1975).CrossRefGoogle Scholar
  15. [15]
    W. E. Dahlke and J. A. Shinier, Solid-St. Electron. 26, 1129 (1983).CrossRefGoogle Scholar
  16. [16]
    W. E. Dahlke and S. Jain, J. Appl. Phys. 59, 1264 (1986).CrossRefGoogle Scholar
  17. [17]
    S. Jain and W. E. Dahlke, Solid-St. Electron. 29, 597 (1986).CrossRefGoogle Scholar
  18. [18]
    W. E. Dahlke and S. Jain, (this book).Google Scholar
  19. [19]
    S. Kar and W. E. Dahlke, Solid-St. Electron. 15, 221 (1972).CrossRefGoogle Scholar
  20. [20]
    S. K. Ghandhi, Theory and Practice of Microelectronics (Wiley, New York, 1968 ).Google Scholar
  21. [21]
    B. E. Deal, J. Electrochem. Soc. 114, 266 (1967).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Sanjay Jain
    • 1
  1. 1.AT&T Bell LaboratoriesAllentownUSA

Personalised recommendations