Advertisement

Reading the Sedimentary Record of the Ocean’s Productivity

  • W. H. Berger
  • J. C. Herguera
Part of the Environmental Science Research book series (ESRH, volume 43)

Abstract

The basic controls on ocean productivity are poorly understood both biologically and geologically. In fact, we do not know the global patterns of productivity very well, either with regard to the rates of primary production (that is, the amount of carbon fixed in the photic zone each year), or with regard to the types of primary production (that is, the kinds of organisms involved).

Keywords

Organic Carbon Benthic Foraminifera Planktonic Foraminifera Coastal Upwelling Oxygen Isotope Record 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenbach, A. V., and Sarnthein, M., 1989, Productivity record in benthic foraminifera, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley and Sons, Chichester.Google Scholar
  2. Arrhenius, G. O. S., 1952, Sediment cores from the east Pacific, Rep. Swed. Deep Sea Exped. 1947–1948, 5:1.Google Scholar
  3. Arrhenius, G. O. S., 1988, Rate of production, dissolution and accumulation of biogenic solids in the ocean, Palaeogeography, Palaeoclimatology, Palaeoecology, 67:119.Google Scholar
  4. Bacastow, R., and Maier-Reimer, E., 1991, Dissolved organic carbon in modeling oceanic new production, Global Biogeochem. Cycles, 5:71.Google Scholar
  5. Banse, K., 1990, Does iron really limit phytoplankton production in the offshore subarctic Pacific?, Limnol. Oceanogr., 35:772.Google Scholar
  6. Banse, K., 1991, Iron availability, nitrate uptake, and exportable new production in the subarctic Pacific, J. Geophys. Res., 96 (Cl):741.Google Scholar
  7. Barnola, J. M., Raynaud, D., Korotkevich, Y. S., Lorius, C., 1987, Vostok ice core provides 160,000 year record of atmospheric CO2, Nature, 329:408.Google Scholar
  8. Berger, W. H., 1976, Biogenous deep-sea sediments: production, preservation and interpretation, in: “Treatise on Chemical Oceanography,” Vol.5, J.P. Riley and R. Chester, eds., Academic Press, London.Google Scholar
  9. Berger, W. H., 1977, Carbon dioxide excursions and the deep sea record: aspects of the problem, in: “The Fate of Fossil Fuel CO2 in the Oceans,” N.R. Andersen and A. Malahoff, eds., Plenum Press, New York.Google Scholar
  10. Berger, W. H., 1978, Sedimentation of deep-sea carbonate: maps and models of variations and fluctuations, J. Foram. Res., 8:286.Google Scholar
  11. Berger, W. H., and Diester-Haass, L., 1988, Paleoproductivity: the benthic/planktonic ratio in foraminifera as a productivity index, Marine Geol., 81:15.Google Scholar
  12. Berger, W. H., Finkel, R. C., Killingley, J. S., and Marchig, V., 1983, Glacial-Holocene transition in deep-sea sediments: manganese spike in the east-equatorial Pacific, Nature, 303:231.Google Scholar
  13. Berger, W. H., Fischer, K., Lai, C., and Wu. G., 1987a, Ocean productivity and organic carbon flux. Part I. Overview and maps of primary production and export production, Scripps Institution of Oceanography Ref. 87-30:1.Google Scholar
  14. Berger, W. H., and Keir, R. S., 1984, Glacial-Holocene changes in atmospheric CO2 and the deep-sea record, in: “Climate Processes and Climate Sensitivity,” J.E. Hansen and T. Takahashi, eds., Geophys. Monogr. 29, American Geophys. Union, Washington, D.C.Google Scholar
  15. Berger, W. H., Killingley, J.S., and Vincent, E., 1987b, Time scale of Wisconsin/Holocene transition: oxygen isotope record in the western equatorial Pacific, Quaternary Res., 28:295.Google Scholar
  16. Berger, W. H., and Roth, P. H., 1975, Oceanic micropaleontology: progress and prospects, Rev. Geophys. Space Phys., 13:561.Google Scholar
  17. Berger, W. H., Smetacek, V. S., and Wefer, G., 1989, Ocean productivity and paleoproductivity — an overview, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  18. Berger, W. H., and Wefer, G., 1990, Export production: seasonally and intermittency, and paleoceanographic implications, Global and Planetary Change, 3:245.Google Scholar
  19. Berger, W. H., and Wefer, G., On the productivity of the glacial ocean: discussion of the iron hypothesis, Limnology and Oceanography, in press.Google Scholar
  20. Betzer, P. R., Showers, W. J., Laws, E. A., Winn, C. D., DiTullio, G. R., and Kroopnick, P. M., 1984, Primary productivity and particle fluxes on a transect of the equator at 153°W in the Pacific Ocean, Deep-Sea Res., 31:1.Google Scholar
  21. Boyle, E. A., 1990, Quaternary deepwater paleoceanography, Science, 249:863.PubMedGoogle Scholar
  22. Bralower, T. J., and Thierstein, H. R., 1987, Organic carbon and metal accumulation rates in Holocene and mid-Cretaceous sediments: palaeoceanographic significance, in: “Marine Petroleum Source Rocks,” J. Brooks and A.J. Fleet, eds., Geol. Soc. Spec. Publ., 26:345.Google Scholar
  23. Bramlette, M. N., 1946, The Monterey Formation of California and the origin of its siliceous rocks, U.S. Geol. Survey Prof. Paper, 212:1.Google Scholar
  24. Broecker, W. S., 1973, Factors controlling CO2 content in the oceans and atmosphere, in: “Carbon and the Biosphere,” G.M. Woodwell and E.V. Pecan, eds., AEC Symposium, 30:32.Google Scholar
  25. Broecker, W. S., 1982, Ocean chemistry during glacial time, Geochim. Cosmochim. Acta, 46:1689.Google Scholar
  26. Bruland, K. W., Bienfang, P. K., Bishop, J. K. B., Eglinton, G., Ittekkot, V. A. W., Lampitt, R., Sarnthein, M., Thiede, J., Walsh, J. J., and Wefer, G., 1989, Flux to the seafloor, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  27. Burke, S. K., Berger, W. H., Coulbourn, W. T., and Vincent, E., Benthic foraminifera in box core ERDC 112, Ontong Java Plateau, J. Foram. Res., in press.Google Scholar
  28. Byrne, J. V., and Emery, K. O., 1960, Sediments of the Gulf of California, GeoL Soc. America Bulletin, 71:983.Google Scholar
  29. Calvert, S. E., 1966, Accumulation of diatomaceous silica in the sediments of the Gulf of California, Geol. Soc. America Bull, 77:569.Google Scholar
  30. Calvert, S. E., 1974, Deposition and diagenesis of silica in marine sediments, in: “Pelagic Sediments on Land and Under the Sea,” K.J. Hsü and H. Jenkyns, eds., Spec. Publ. Internat. Assoc. Sedimentologists, 1:273.Google Scholar
  31. Calvert, S. E., 1987, Oceanographic controls on the accumulation of organic matter in marine sediments, in: “Marine Petroleum Source Rocks,” J. Brooks and A.J. Fleet, eds., Geol. Soc. Spec. Publ., 26:137.Google Scholar
  32. Christensen, J. P., Murray, J. W., Devol, A.H., and Codispoti, L. A., 1987, Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget, Global Biogeochem. Cycles, 1:97.Google Scholar
  33. CLIMAP Project Members, 1976, The surface of the ice-age earth, Science, 191:1131.Google Scholar
  34. Codispoti, L. A., 1989, Phosphorus vs. nitrogen limitation of new and export production, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., Wiley-Interscience, Chichester.Google Scholar
  35. DeMaster, D.J., 1981, The supply and accumulation of silica in the marine environment, Geochim. Cosmochim. Acta, 45:1715.Google Scholar
  36. Desrosières, R., 1969, Surface macroplankton of the Pacific Ocean along the equator, Limnol. Oceanogr., 14:626.Google Scholar
  37. Douglas, R. G., and Woodruff, F., 1981, Deep sea benthic foraminifera, in: “The Sea, vol 7, the Oceanic Lithosphere,” C. Emiliani, ed., Wiley-Interscience, New York.Google Scholar
  38. Elderfield, H., 1990, Tracers of ocean paleoproductivity and paleochemistry: an introduction, Paleoceanogr., 5:711.Google Scholar
  39. Emerson, S., Fischer, K., Reimers, C., and Heggie, D., 1985, Organic carbon dynamics and preservation in deep-sea sediments, Deep-Sea Res., 32:1.Google Scholar
  40. Emerson, S., and Hedges, J. I., 1988, Processes controlling the organic carbon content of open ocean sediments, Palaeogeogr., Palaeoclimat., Palaeoecol., 3:621.Google Scholar
  41. Eppley, R. W., and Peterson, B. J., 1979, Particulate organic matter flux and planktonic new production in the deep ocean, Nature, 282:677.Google Scholar
  42. Finney, B. P., Lyle, M. W., and Heath, G. R., 1988, Sedimentation at MANOP Site H (eastern equatorial Pacific) over the past 400,000 years: climatically induced redox variations and their effects on transition metal cycling, Paleoceanogr., 3:169.Google Scholar
  43. Froelich, P. N., Klinkhammer, G. P., Bender, M. L., Luedtke, N. A., Heath, G. R., Cullen, D., Dauphin, P., Hammond, D., Hartman, B., and Maynard, V., 1979, Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta., 43:1075.Google Scholar
  44. Ganssen, G., and Sarnthein, M., 1983, Stable-isotope composition of foraminifers: the surface and bottom water record of coastal upwelling, in: “Coastal Upwelling, its Sediment Record. Part A: Responses of the Sedimentary Regime to Present Coastal Upwelling,” E. Suess and J. Thiede, eds., Plenum Press, New York.Google Scholar
  45. Goll, R. M., and Bjoerklund, K. R., 1971, Radiolaria in surface sediments of the North Atlantic Ocean, Micropaleontology, 17:434.Google Scholar
  46. Goll, R. M., and Bjoerklund, K. R., 1974, Radiolaria in surface sediments of the South Atlantic, Micropaleontology, 20:38.Google Scholar
  47. Haake, F.-W., Coulbourn, W. T., and Berger, W. H., 1982, Benthic foraminifera: depth distribution and redeposition, in: “Geology of the Northwest African Continental Margin,” U. von Rad, K. Hinz, M. Sarnthein, and E. Seibold, eds., Springer Verlag, Heidelberg.Google Scholar
  48. Hays, J.D., 1967, Quaternary sediments of the Antarctic Ocean, Progress in Oceanography, 4:117.Google Scholar
  49. Heath, G. R., 1974, Dissolved silica and deep-sea sediments, in: “Studies in Paleo-Oceanography,” W.W. Hay, ed., Soc. Econ. Paleont. and Mineral., Spec. Pub., 20:77.Google Scholar
  50. Heath, G. R., Moore, T. C., and Dauphin, J. P., 1977, Organic carbon in deep-sea sediments, in: “The Fate of Fossil Fuel CO2 in the Oceans,” N.R. Andersen and A. Malahoff, eds., Plenum, New York.Google Scholar
  51. Hebbeln, D., Wefer, G., and Berger, W.H., 1990, Pleistocene dissolution fluctuations from apparent depth of deposition in Core ERDC127P, west-equatorial Pacific, Marine Geology, 92:165.Google Scholar
  52. Herbert, T. S., Curry, W. B., Barron, J. A., Codispoti, L. A., Gersonde, R., Keir, R. S., Mix, A. C., Mycke, B., Schrader, H., Stein, R., and Thierstein, H. R., 1989, Geological Reconstructions of Marine Productivity, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  53. Herguera, J. C., Deep-sea benthic foraminifera and biogenic opal: glacial to postglacial productivity changes in the west-equatorial Pacific, Marine Micropal., in press.Google Scholar
  54. Herguera, J. C., and Berger, W. H., Paleoproductivity: glacial to postglacial change in the western equatorial Pacific, from benthic foraminifera, Geology, in press.Google Scholar
  55. Herguera, J. C., Stott, L., and Berger, W. H., Glacial deep-water properties in the west-equatorial Pacific: bathyal thermocline near 2000 m depth, Marine Geol., in press.Google Scholar
  56. Johnson, T. C., Hamilton, E. L., and Berger, W. H., 1977, Physical properties of calcareous ooze: control by dissolution at depth, Marine GeoL, 24:259.Google Scholar
  57. Keir, R. S., 1988, On the late Pleistocene ocean geochemistry and circulation, Paleoceanogr., 3:413.Google Scholar
  58. Keir, R. S., 1990, Reconstructing the ocean carbon system variation during the last 150,000 years according to the Antarctic nutrient hypothesis, Paleoceanogr., 5:253.Google Scholar
  59. Kolbe, R. W., 1955, Diatoms from equatorial Atlantic cores, Repts. Swed. Deep-Sea Exped., 7(3):149.Google Scholar
  60. Koblentz-Mishke, O. I., Volkovinsky, V. V., and Kabanova, J. G., 1970, Plankton primary production of the world ocean, in: “Scientific Exploration of the South Pacific,” W. Wooster, ed., National Academy of Sciences, Washington, D.C.Google Scholar
  61. Kutzbach, J. E., 1989, Possible effects of orbital variations on past sources and transports of eolian material: estimates from general circulation model experiments, in: “Paleoclimatology and Paleometeorology: Modern and Past Patterns of Global Atmospheric Transport,” M. Leinen and M. Sarnthein, eds., Kluwer Academic, Dordrecht.Google Scholar
  62. Lange, C. B., and Berger, W. H., 1991, Diatoms fail to indicate the increased glacial productivity in the western equatorial, Pacific. Geol. Soc. America, Fall Meeting 1991, Abstracts.Google Scholar
  63. Lange, C. B., Burke, S. K., and Berger, W. H., 1990, Biological production off Southern California is linked to climatic change, Climatic Change, 16:319.Google Scholar
  64. Lapenis, A. G., Os’kina, N. S., Barash, M. S., Biyum, N. S., and Vasileva, Ye. V., 1990, Late Quaternary variations in the productivity of the ocean’s biota, Okeanologiya, 30:93. [In Russian].Google Scholar
  65. Leinen, M., 1979, Biogenic silica accumulation in the central equatorial Pacific and its implications for Cenozoic paleoceanography: summary, GeoL Soc. America Bull., Part I, 90:801.Google Scholar
  66. Leinen, M., Cwienk, D., Heath, G. R., Biscaye, P., Kolla, V., Thiede, J., and Dauphin, J. P., 1986, Distribution of biogenic silica and quartz in recent deep-sea sediments, Geology, 14:199.Google Scholar
  67. Lisitzin, A. P., 1967, Basic relationships in distribution of modern siliceous sediments and their connection with climatic zonation, Internat. Geol. Rev., 9:631 (transi, fr. Russian).Google Scholar
  68. Lisitzin, A. P., 1972. Sedimentation in the world ocean, Soc. Econ. Paleont. Mineral Spec. Publ., 17:1.Google Scholar
  69. Loubere, P., 1987, Late Pliocene variations in the carbon isotope values of north Atlantic benthic foraminifera: biotic control of the isotope record, Mar. Geol, 76:45.Google Scholar
  70. Loubere, P., 1991, Deep-sea benthic foraminiferal assemblage response to surface ocean productivity gradient: a test, Paleoceanogr., 6:193.Google Scholar
  71. Lutze, G. F., Pflaumann, U., and Weinholz, P., 1986, Jungquartäre Fluktuationen der benthischen Foraminiferenfaunen in Tiefsee-Sedimenten vor NW-Afrika — eine Reaktion auf Produktivitätsänderungen im Oberflächenwasser, Meteor Forschungs-Ergebnisse, Reihe C., 40:163.Google Scholar
  72. Lyle, M., 1988, Climatically forced organic carbon burial in equatorial Atlantic and Pacific oceans, Nature, 335:529.Google Scholar
  73. Lyle, M., Murray, D. W., Finney, B. P., Dymond, J., Robbins, J. M., and Brooksforce, K., 1988, The record of late Pleistocene biogenic sedimentation in the eastern tropical Pacific Ocean, Paleoceanogr., 3:39.Google Scholar
  74. Martin, J. H., 1990, Glacial-interglacial CO2 change: the iron hypothesis, Paleoceanogr., 5:1.Google Scholar
  75. Martin, J. H. and Fitzwater, S. E., 1988, Iron deficiency limits phytoplankton growth in north-east Pacific subarctic, Nature, 331:341.Google Scholar
  76. Martin, J. H., Gordon, R. M., and Fitzwater, S. E., 1990, Iron in Antarctic waters, Nature, 345:156.Google Scholar
  77. Mikkelsen, N., 1979, Diatoms in equatorial deep-sea sediments: sedimentation and dissolution over the last 20,000 years, Nova Hedwigia, 64:489.Google Scholar
  78. Milliman, J. D., and Takahashi, K., Carbonate and opal production and accumulation in the ocean, in: “Global Surficial Geofluxes: Modern to Glacial,” W. Hay, M. Meybeck, and T. Usselman, eds., National Research Council, Washington, D.C., in press.Google Scholar
  79. Mix, A. C., 1989a, Pleistocene paleoproductivity: evidence from organic carbon and foraminiferal species, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S., Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  80. Mix, A. C., 1989b, Influence of productivity variations on long term atmospheric CO2, Nature, 337:541.Google Scholar
  81. Molfino, B., and McIntyre, A., 1991, Precessional forcing of nutricline dynamics in the equatorial Atlantic, Science, 249:766.Google Scholar
  82. Mortlock, R. A., Charles, C. D., Froelich, P. N., Zibello, M. A., Saltzman, J., Hays, J. D., and Burckle, L. H., 1991, Evidence for lower productivity in the Antarctic Ocean during the last glaciation, Nature, 351:220.Google Scholar
  83. Müller, P. J., Erlenkeuser, H., and von Grafenstein, R., 1983, Glacial-interglacial cycles in oceanic productivity inferred from organic carbon contents in eastern North Atlantic sediment cores, in: “Coastal Upwelling, its Sedimentary Record. Part B: Sedimentary Records of Ancient Coastal Upwellings,” J. Thiede and E. Suess, eds., Plenum Press, New York.Google Scholar
  84. Müller, P. J., and Suess, E., 1979, Productivity, sedimentation rate, and sedimentary organic matter in the oceans — I. Organic carbon preservation, Deep-Sea Res., 26A:1347.Google Scholar
  85. Parker, F. L., 1973, Living planktonic foraminifera from the Gulf of California, J. Foram. Res., 3:70.Google Scholar
  86. Parker, F. L., and Berger, W. H., 1971, Faunal and solution patterns of planktonic foraminifera in surface sediments of the South Pacific, Deep-Sea Res., 18:73.Google Scholar
  87. Pedersen, T. F., 1983, Increased productivity in the eastern equatorial Pacific during the last glacial maximum (19,000 to 14,000 yr B.P.), Geology, 11:16.Google Scholar
  88. Pedersen, T. F., and Calvert, S. E., 1990, Anoxia vs. productivity: what controls the formation of organic-carbon-rich sediments and sedimentary rocks?, Amer. Assoc. Petrol Geol. Bull., 74:454.Google Scholar
  89. Petit, J. R., Mounier, L., Jouzel, J., Korotkevich, Y. S., Kotlyakov, V. I., and Lorius, C., 1990, Palaeoclimatological and chronological implications of the Vostok core dust record, Nature, 343:56.Google Scholar
  90. Phleger, F. B., Parker, F. L., and Peirson, J. F., 1953, North Atlantic Foraminifera, Sediment cores from the North Atlantic Ocean, Swedish Deep-Sea Exped. Repts., 7:1.Google Scholar
  91. Pisias, N. G., and Rea, D. K., 1988, Late Pleistocene paleoclimatology of the central equatorial Pacific: sea surface response to the Southeast Trade Winds, Paleoceanogr., 3:21.Google Scholar
  92. Platt, T., and Li, W. K. W., eds., 1986, “Photosynthetic Picoplankton,” Canadian Bulletin of Fisheries and Aquatic Sciences, 214:1.Google Scholar
  93. Prahl, F. G., and Muelhausen, L. A., 1989, Lipid biomarkers as geochemical tools for paleoceanographic study, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  94. Prahl, F. G., Muelhausen, L. A., and Lyle, M., 1989, An organic geochemical assessment of oceanographic conditions at MANOP Site C over the past 26,000 years, Paleoceanogr., 4:495.Google Scholar
  95. Pratje, O., 1951, Die Kieselsäureorganismen des Südatlantischen Ozeans als Leitformen in den Bodenablagerungen, Deut. Hydr. Zeitschr., 4:1.Google Scholar
  96. Prell, W. L., and Curry, W. B., 1980, Faunal and isotopic indices of monsoonal upwelling: Western Arabian Sea, Oceanol. Acta., 4:91.Google Scholar
  97. Premuzic, E. T., Benkovitz, C. M., Gaffney, J. S., and Walsh, J. J., 1982, The nature and distribution of organic matter in the surface sediments of world oceans and seas, Org. Geochem., 4:63.Google Scholar
  98. Price, B. A., 1988, “Equatorial Pacific Sediments: Studies on Amino Acid, Organic Matter, and Manganese Deposition,” Ph.D. thesis, University of California, San Diego.Google Scholar
  99. Rea, D. K., Chambers, L. W., Chuey, J. M., Janecek, T. R., Leinen, M., and Pisias, N. G., 1986, A 420,000-year record of cyclicity in oceanic and atmospheric processes from the eastern equatorial Pacific, Paleoceanogr., 1:577.Google Scholar
  100. Reimers, C. E., 1989, Control of benthic fluxes by particulate supply, in: “Productivity of the Ocean: Present and Past,” W. H. Berger, V. S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  101. Riedel, W. R., 1959, Siliceous organic remains in pelagic sediments, Soc. Econ. Paleont. Mineral Spec. Pub., 7:80.Google Scholar
  102. Riedel, W. R., and Funnell, B. M., 1964, Tertiary sediment cores and microfossils from the Pacific Ocean floor, Quat. J. Geol Soc. London, 120:305.Google Scholar
  103. Romankevich, E. A., 1984, “Geochemistry of Organic Matter in the Ocean,” Springer Verlag, Heidelberg.Google Scholar
  104. Rowe, G. T., 1983, Biomass and production of the deep-sea macrobenthos, in: “The Sea, Vol. 8, Deep-Sea Biology,” G. T. Rowe, ed., Wiley Interscience, New York.Google Scholar
  105. Sancetta, C., 1979, Oceanography of the North Pacific during the last 18,000 years: evidence from fossil diatoms, Marine Micropal., 4:103.Google Scholar
  106. Sarnthein, M., Thiede, J., Pflaumann, U., Erlenkeuser, H., Fütterer, D., Koopmann, B., Lange, H. and Seibold, E., 1982, Atmospheric and oceanic circulation patterns off Northwest Africa during the past 25 million years, in: “Geology of the Northwest African Continental Margin,” U. von Rad, K. Hinz, M. Sarnthein, and E. Seibold, eds., Springer Verlag, Heidelberg.Google Scholar
  107. Sarnthein, M., Winn, K., and Zahn, R., 1987, Paleoproductivity of oceanic upwelling and the effect on atmospheric CO2 and climatic change during déglaciation times, in: “Abrupt Climatic Change — Evidence and Implications,” W.H. Berger and L.D. Labeyrie, eds., Reidel, Dordrecht.Google Scholar
  108. Sarnthein, M., Winn, K., Duplessy, J.-C., and Fontugne, M. R., 1988, Global variations of surface ocean productivity in low and mid latitudes: influence on CO2 reservoirs of the deep ocean and atmosphere during the last 21,000 years, Paleoceanogr., 3:361.Google Scholar
  109. Schiffelbein, P., and Dorman, L., 1986, Spectral effects of time-depth nonlinearities in deep sea sediment records: a deconvolution technique for realigning time and depth scales, J. Geophys. Res., 91 (B3):3821.Google Scholar
  110. Schrader, H., and Sorknes, R., 1991, Peruvian coastal upwelling: Late Quaternary productivity changes revealed by diatoms, Mar. Geol., 97:233.Google Scholar
  111. Shackleton, N. J., 1977, Carbon-13 in Uvigerina: tropical rainforest history and the equatorial Pacific carbonate dissolution cycles, in: “The Fate of Fossil Fuel CO2 in the Oceans,” N.R. Andersen, and A. Malahoff, eds., Plenum Press, New York.Google Scholar
  112. Shackleton, N. J., Hall, M. A., Line, J., and Shuxi, C., 1983, Carbon isotope data in Core V19-30 confirm reduced carbon dioxide concentration in the ice age atmosphere, Nature, 306:319.Google Scholar
  113. Shaffer, G., 1989, A model of biogeochemical cycling of phosphorus, nitrogen, oxygen, and sulphur in the ocean: one step toward a global climate model, J. Geophys. Res., 94 (C2): 1979.Google Scholar
  114. Somayajulu, B. L. K., Sharma, P., and Berger, W. H., 1984. 10Be, 14C., U-Th decay series nuclides and 18O in a box core from the central North Atlantic, Marine Geol., 54:169.Google Scholar
  115. Stein, R., 1991, “Accumulation of Organic Carbon in Marine Sediments,” Springer Verlag, Berlin.Google Scholar
  116. Suess, E., 1980, Paniculate organic carbon flux in the oceans — surface productivity and oxygen utilization, Nature, 288:260.Google Scholar
  117. Toggweiler, J. R., 1989, Is the downward dissolved organic matter (DOM) flux important in carbon transport?, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  118. van der Zwaan, G. J., Jorissen, F. J., and de Stigter, H. C., 1990, The depth dependency of planktonic/benthic foraminiferal ratios: constraints and applications, Marine Geol., 95:1.Google Scholar
  119. Vincent, E., and Berger, W. H., 1981, Planktonic foraminifera and their use in paleoceanography, in: “The Sea, Vol. 7, the Oceanic Lithosphere,” C. Emiliani, ed., Wiley-Interscience, New York.Google Scholar
  120. Walsh, J. J., 1989, How much shelf production reaches the deep sea?, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  121. Wefer, G., 1989, Particle flux in the ocean: effects of episodic production, in: “Productivity of the Ocean: Present and Past,” W.H. Berger, V.S. Smetacek, and G. Wefer, eds., John Wiley, Chichester.Google Scholar
  122. Wu, G., and Berger, W. H., 1991, Pleistocene δ18O records from Ontong-Java Plateau: effects of winnowing and dissolution, Marine Geol., 96:193.Google Scholar
  123. Wu, G., Herguera, J. C., and Berger, W. H., 1990, Differential dissolution: modification of late Pleistocene oxygen isotope records in the western equatorial Pacific. Paleoceanogr., 5:581.Google Scholar
  124. Zahn, R., Winn, K., and Sarnthein, M., 1986, Benthic foraminiferal δ13C and accumulation rates of organic carbon: Uvigerina peregrina group and Cibicidoides wuellerstorfi, Paleoceanogr., 1:27.Google Scholar
  125. Zhuang, G., Duce, R. A., and Kester, D. R., 1990, The dissolution of atmospheric iron in surface water of the open ocean, J. Geophys. Res., 95 (C9): 16,207.Google Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • W. H. Berger
    • 1
  • J. C. Herguera
    • 1
  1. 1.Scripps Institution of OceanographyUniversity of CaliforniaSan Diego, La JollaUSA

Personalised recommendations