Skip to main content

Shape Classification by Using Associative Memories

  • Chapter
Visual Form

Abstract

The use of associative techniques to perform shape recognition is considered. With respect to classical recognition techniques, it is shown how the pattern-completion capability and content addressability of associative memories can yield robust performance and high computational speed in shape recognition applications, especially in those domains in which promptness of ‘first-glance’ classification is more important than accurate pattern-analysis capabilities. The noise-like coding model of associative memory is adopted, specifying the basic associative classification principle. A set of different experimental domains are considered, at increasing levels of complexity, evidencing how the theoretical model can be effectively applied to image and shape recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bottini S (1980) An algebraic model of an associative noise-like coding memory. Biol Cybern 36:221–228.

    Article  MATH  Google Scholar 

  2. Bottini S (1988) An after-Shannon measure of the storage capacity of an associative noise-like coding memory. Biol Cybern 59:151–159.

    Article  MathSciNet  Google Scholar 

  3. Parodi GC, Zunino R (1990) Image classification by using associative noise-like memories. Proc. IEEE Int.Phoenix Conf.on Comp.and Comm. IPCCC’90 Phoenix AZ March 1990.

    Google Scholar 

  4. Parodi GC, Zunino R (1990) Noise insensitivity of an associative image classification system. Proc. IEEE Int.Workshop on Robust Comp.Vision, Seattle WA — in press by Academic Press New York.

    Google Scholar 

  5. Parodi GC, Regazzoni C, Vernazza G, Zunino R (1991) Speeding up scene recognition by using an associative noise-like coding memory. IEEE Int.Phoenix Conf. on Comp.and Comm. IPCCC’91 Phoenix AZ March 1991.

    Google Scholar 

  6. Persoon E, Fu KS (1977) Shape discrimination using Fourier descriptors. IEEE Trans on Sys Man Cybern vol. SMC-7, pp. 170–179.

    Article  MathSciNet  Google Scholar 

  7. Arbter K, Snyder WE, Burkhardt H, Hirzinger G, (1990) Application of affine-in-variant Fourier descriptors to recognition of 3-D objects. IEEE Trans Pattern Anal. Machine Intell July 1990, vol. PAMI-12 no. 7 pp. 640–647.

    Article  Google Scholar 

  8. Kie-Bum Eom, Juha Park (1990) A robust model based approach in shape recognition. Proc. IEEE Int.Workshop Robust Comp.Vision, Seattle Oct 1990, pp. 57–71 — in press by Academic Press, New York.

    Google Scholar 

  9. Chen DS, Schunck BG (1990) Robust statistical methods for building classification procedures. Proc. IEEE Int.Workshop Robust Comp.Vision, Seattle Oct 1990, pp. 72–85 — in press by Academic Press, New York.

    Google Scholar 

  10. Borsellino A, Poggio T (1973) Convolution and correlation algebras. Kybernetik 10:113–122.

    Article  MathSciNet  Google Scholar 

  11. Hinton GE, Anderson JA (Eds) (1989) Parallel models of associative memory (Updated Edition). Lawrence Erlbaum Ass., Hillsdale, NJ 1989.

    MATH  Google Scholar 

  12. Wechsler H, Zimmermann JL (1988) 2-D invariant object recognition using distributed associative memory. IEEE Trans PAMI Vol 10-6: 811–821.

    Article  Google Scholar 

  13. Polzleitner W, Wechsler H (1990) Selective and Focused invariant recognition using distributed associative memories (DAM). IEEE Trans PAMI Vol. 12-8: 809–814.

    Article  Google Scholar 

  14. Fukushima K, Miyake S, Ito T (1983) Neocognitron: a neural network model for a mechanism of visual pattern recognition. IEEE Trans Sys Man and Cybern Sept/Oct 1983: 826-834.

    Google Scholar 

  15. Rumelhart DE, McClelland JL (1986) Parallel distributed processing — Vols. 1 and 2. MIT Press 1986.

    Google Scholar 

  16. Carpenter GA, Grossberg S (1987) A massively parallel architecture for a self-organizing neural pattern recognition machine. Comp. Vision, Graphics, and Image Processing 1987, 37:54–115.

    Article  MATH  Google Scholar 

  17. Zwicke PE, Kiss I Jr (1983) A new implementation of the Mellin transform and its application to radar classification of ships. IEEE Trans PAMI Vol 5-2:191–199.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Parodi, G., Vernazza, G., Zunino, R. (1992). Shape Classification by Using Associative Memories. In: Arcelli, C., Cordella, L.P., di Baja, G.S. (eds) Visual Form. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0715-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0715-8_41

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0717-2

  • Online ISBN: 978-1-4899-0715-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics