Introduction to Biotechnical and Biomedical Applications of Poly(Ethylene Glycol)

  • J. Milton Harris
Part of the Topics in Applied Chemistry book series (TAPP)


At first glance, the polymer known as poly(ethylene glycol) or PEG appears to be a simple molecule. It is a linear or branched, neutral polyether, available in a variety of MWs, and soluble in water and most organic solvents. Despite its apparent simplicity,
$${HO - {{\left( {C{H_2}C{H_2}O} \right)}_n} - C{H_2}C{H_2}OH} \hfill \\ {poly(ethylene\,glycol)}$$
this molecule is the focus of much interest in the biotechnical and biomedical communities. Primarily this is because PEG is unusually effective at excluding other polymers from its presence when in an aqueous environment. This property translates into protein rejection, formation of two-phase systems with other polymers, nonimmunogenicity, and nonantigenicity. In addition, the polymer is nontoxic and does not harm active proteins or cells although it interacts with cell membranes. It is subject to ready chemical modification and attachment to other molecules and surfaces, and when attached to other molecules it has little effect on their chemistry but controls their solubility and increases their size. These properties, which are described in more detail below, have led to a variety of important biotechnical and biomedical applications, a summary of which is also presented below.


Crown Ether Ethylene Oxide Propylene Oxide Monomethyl Ether Phase Transfer Catalysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Poison, G. M. Potgieter, J. E Largier, G. E. Mears, and E J. Joubert, Biochim. Biophys. Ada 82, 463 (1964).CrossRefGoogle Scholar
  2. 2.
    M. Zeppezauer and S. Brishammar, Biochim. Biophys. Acta 94, 581 (1965).PubMedCrossRefGoogle Scholar
  3. 3.
    P W. Chun, M. Fried, and E. E Ellis, Anal. Biochem. 19, 481 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    P-Å. Albertsson, Partition of Cell Particles and Macromolecules, 3rd ed., Wiley, New York (1986).Google Scholar
  5. 5.
    K. N. Kao, E. Constabel, M. R. Michayluck, and O. L. Gamborg, Planta 120, 215 (1974).CrossRefGoogle Scholar
  6. 6.
    Q. F. Ahkong, D. Fisher, W. Tampion, and J. A. Lucy, Nature 253, 194 (1975).PubMedCrossRefGoogle Scholar
  7. 7.
    G. Pontecorvo, Somat. Cell Genet. 1, 397 (1975).PubMedCrossRefGoogle Scholar
  8. 8.
    A. Abuchowski, T. van Es, N. C. Palczuk, and E. E. Davis, J. Biol. Chem. 252, 3578 (1977).PubMedGoogle Scholar
  9. 9.
    Y. Mori, S. Nagaoka, H. Takiuchi, T. Kikuchi, N. Noguchi, H. Tanzawa, and Y. Noishiki, Trans. Am. Soc. Artif. Internal Organs 28, 459 (1982).Google Scholar
  10. 10.
    E E. Bailey, Jr. and J. V Koleske, Poly(Ethylene Oxide), Academic Press, New York (1976).Google Scholar
  11. 11.
    E E. Bailey, Jr. and J. V. Koleske, Alkylene Oxides and Their Polymers, Marcel Dekker, New York (1991).Google Scholar
  12. 12.
    J. M. Dust, Z.-H. Fang, and J. M. Harris, Macromolecules 23, 3742 (1990).CrossRefGoogle Scholar
  13. 13.
    J. M. Harris and M. G. Case, J. Org. Chem. 48, 5390 (1983).CrossRefGoogle Scholar
  14. 14.
    J. M. Harris, N. H. Hundley, T. G. Shannon, and E. C. Struck, J. Org. Chem. 47, 4789 (1982).CrossRefGoogle Scholar
  15. 15.
    J. M. Harris, N. H. Hundley, T. G. Shannon, and E. C. Struck, in: Crown Ethers and Phase Transfer Catalysis in Polymer Science (L. Mathias and C. E. Carreher, eds.), p. 371, Plenum Press, New York (1984).CrossRefGoogle Scholar
  16. 16.
    C. Starks and C. Liotta, Phase Transfer Catalysis, Academic Press, New York (1978).Google Scholar
  17. 17.
    S. Nagaoka, Y. Mori, H. Takiuchi, K. Yokota, H. Tanzawa, and S. Nishiumi, in: Polymers as Biomaterials (S. W. Shalaby, A. S. Hoffman, B. D. Ratner, and T. A. Horbett, eds.), p. 361, Plenum Press, New York (1985).Google Scholar
  18. 18.
    K. Hellsing, J. Chromatogr. 36, 270 (1968).Google Scholar
  19. 19.
    A. P Ryle, Nature 206, 1256 (1965).PubMedCrossRefGoogle Scholar
  20. 20.
    D. E. Brooks, K. A. Sharp, and D. Fisher, in: Partitioning in Aqueous Two-Phase Systems (H. Walter, D. E. Brooks, and D. Fisher, eds.), Chap. 2, Academic Press, New York (1985).Google Scholar
  21. 21.
    A. Gustafsson, H. Wennerstrom, and F Tjerneld, Polymer 27, 1768 (1986).CrossRefGoogle Scholar
  22. 22.
    J. N. Baskir, T. A. Hatton, and U. W. Suter, J. Phys. Chem. 93, 2111 (1989).CrossRefGoogle Scholar
  23. 23.
    C. A. Haynes, R. A. Beynon, R. S. King, H. W. Blanch, and J. M. Prausnitz, J. Phys. Chem. 93, 5612 (1989).CrossRefGoogle Scholar
  24. 24.
    J. M. Harris, J. Macromol. Sci. Rev. Macromol. Chem. Phys. C25, 325 (1985).CrossRefGoogle Scholar
  25. 25.
    K. Yoshinaga, S. G. Shafer, and J. M. Harris, J. Bioact. Compatible Polym. 2, 49 (1987).CrossRefGoogle Scholar
  26. 26.
    L. J. Karr, P A. Harris, D. M. Donnely, and J. M. Harris, unpublished results.Google Scholar
  27. 27.
    L. J. Karr, J. M. Van Alstine, R. S. Snyder, S. G. Shafer, and J. M. Harris, J. Chromatogr. 442, 219 (1988).PubMedCrossRefGoogle Scholar
  28. 28.
    K. Bergström, K. Holmberg, A. Safranj, A. S. Hoffman, M. J. Edgell, B. A. Hovanes, and J. M. Harris, J. Biomed. Mater. Res. (in press).Google Scholar
  29. 29.
    D. A. Herold, K. Keil, and D. E. Bruns, Biochem. Pharmacol. 38, 73 (1989).PubMedCrossRefGoogle Scholar
  30. 30.
    H. F Smyth, Jr., C. P. Carpenter, and C. S. Weil, J. Am. Pharm. Assoc. 39, 349 (1950).Google Scholar
  31. 31.
    A. J. Johnson, M. H. Darpatkin, and J. Newman, Br. J. Hematol. 21, 21 (1971).CrossRefGoogle Scholar
  32. 32.
    C. B. Shaffer and F. H. Critchfield, J. Am. Pharm. Assoc. 36, 152 (1947).Google Scholar
  33. 33.
    A. Abuchowski and F. F. Davis, in: Enzymes as Drugs (J. Holsenberg and J. Roberts, eds.), p. 367, Wiley, New York (1981).Google Scholar
  34. 34.
    A. W. Richter and E. Åkerblom, Int. Arch. Allergy Appl. Immunol. 70, 124 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    A. W. Richter and E. Åkerblom, Int. Arch. Allergy Appl. Immunol. 74, 36 (1984).PubMedCrossRefGoogle Scholar
  36. 36.
    I. N. Topchieva, Russ. Chem. Rev. 49, 494 (1980).CrossRefGoogle Scholar
  37. 37.
    R A. Harris, F. Tjerneld, A. A. Kozlowski, and J. M. Harris, unpublished results.Google Scholar
  38. 38.
    S.-S. Suh, M. E. Van Dam, G. E. Wuenschell, S. Plunkett, and F H. Arnold, in: Protein Purification (M. R. Ladisch, R. C. Willson, C. C. Painton, and S. E. Builder, eds.), Chap. 10, Am. Chem. Soc. (1990).Google Scholar
  39. 39.
    R. Heusch, Biotech-Forum 31 (1986).Google Scholar
  40. 40.
    W. Muller, Eur. J. Biochem. 155, 213 (1986).PubMedCrossRefGoogle Scholar
  41. 41.
    J. S. Beekman, R. L. Minor, C. W. White, J. E. Repine, G. M. Rosen, and B. A. Freeman, J. Biol. Chem. 263, 6884 (1988).Google Scholar
  42. 42.
    A. Abuchowski, G. M. Kazo, C. R. Verhoest, Jr., T. Van Es, D. Kafkewitz, M. L. Nucci, A. T. Viau, and E. E. Davis, Cancer Biochem. Biophys. 7, 175 (1984).PubMedGoogle Scholar
  43. 43.
    M. S. Herschfield, R. H. Buckley, M. L. Greenberg, A. L. Melton, R. Schiff, C. Hatem, J. Kurtzberg, M. L. Markert, R. H. Kobayashi, A. L. Kobayashi, and A. Abuchowski, N. Engl. J. Med. 316, 589 (1987).CrossRefGoogle Scholar
  44. 44.
    P. S. Norman, J. B. Alexander, T. P. King, P. S. Crettcos, A. K. Sobotka, and L. M. Lichtenstein, J. Allergy Clin. Immunol. 69, 99 (1982).CrossRefGoogle Scholar
  45. 45.
    S. Zalipsky, C. Gilon, and A. Zilka, Eur. Polym. J. 19, 1177 (1983).CrossRefGoogle Scholar
  46. 46.
    N. V. Katre, M. J. Knauf, and W. J. Laird, Proc. Natl. Acad. Sci. U.S.A. 84, 1487 (1987).PubMedCrossRefGoogle Scholar
  47. 47.
    Y. Inada, A. Matsushima, Y. Kodera, and H. Nishimura, J. Bioact. Compt. Polym. 5, 343 (1990).CrossRefGoogle Scholar
  48. 48.
    J. Senior, C. Delgado, D. Fisher, C. Tilcock, and G. Gregoriadis, Biochim. Biophys. Acta 1062, 77 (1991).PubMedCrossRefGoogle Scholar
  49. 49.
    A. L. Klibanov, K. Maruyama, A. M. Beckerleg, V. P Torchilin, and L. Huang, Biochim. Biophys. Acta 1062, 142 (1991).PubMedCrossRefGoogle Scholar
  50. 50.
    G. M. Bonora, C. L. Scremin, F. P. Colonna, and A. Garbesi, Nucleic Acids Res. 18, 3155 (1990).PubMedCrossRefGoogle Scholar
  51. 51.
    B. J. Herren, S. G. Shafer, J. M. Van Alstine, J. M. Harris, and R. S. Snyder, J. Colloid Interface Sci. 51, 46 (1987).CrossRefGoogle Scholar
  52. 52.
    J. M. Van Alstine, J. M. Harris, S. Shafer, R. S. Snyder, and B. Herren, US Patent, 4,690,749 (1987).Google Scholar
  53. 53.
    G. J. M. Bruin, J. P Chang, R. H. Kuhlman, K. Zegers, J. C. Kraak, and H. Poppe, J. Chromatogr. 21, 385 (1989).Google Scholar
  54. 54.
    M. Yamazaki and T. Ito, Biochemistry 29, 1309 (1990).PubMedCrossRefGoogle Scholar
  55. 55.
    L. T. Boni, J. S. Hah, S. W. Hui, P. Mukherjee, J. T. Ho, and C. Y. Jung, Biochem. Biophys. Acta 775, 409 (1984).PubMedCrossRefGoogle Scholar
  56. 56.
    P. Caliceti, O. Schiavon, A. Mocali, and E M. Veronese, Il Farmaco 44, 711 (1989).PubMedGoogle Scholar
  57. 57.
    G. D. Bittner, M. L. Ballinger, and M. A. Raymond, Brain Res. 367, 351 (1986).PubMedCrossRefGoogle Scholar
  58. 58.
    T. L. Krause and G. D. Bittner, Proc. Natl. Acad. Sci. U.S.A. 87, 1471 (1990).PubMedCrossRefGoogle Scholar
  59. 59.
    N. Geron and H. Meiri, Biochim. Biophys. Acta 819, 258 (1985).PubMedCrossRefGoogle Scholar
  60. 60.
    G. L. Clifton, B. G. Lyeth, L. W. Jenkins, W. C. Taft, R. J. DeLorenzo, and R. L. Hayes, J. Neurotrauma 6, 71 (1989).PubMedCrossRefGoogle Scholar
  61. 61.
    M. Bundgaard and H. F. Cserr, Brain Res. 206, 71 (1981).PubMedCrossRefGoogle Scholar
  62. 62.
    M. K. Spigelman, R. A. Zappulla, J. Johnson, S. J. Goldsmith, L. I. Malis, and J. F. Holland, J. Neurosurg. 61, 674 (1984).PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1992

Authors and Affiliations

  • J. Milton Harris
    • 1
  1. 1.Department of ChemistryUniversity of Alabama in HuntsvilleHuntsvilleUSA

Personalised recommendations