Skip to main content

Part of the book series: Perspectives on Individual Differences ((PIDF))

Abstract

In order to address the role played by exaggerated cardiovascular reactivity in the development of hypertension, we first present a model of the disorder, next describe evidence for the major components of the model, derived primarily from animal models of hypertension, and then relate these animal studies to those conducted with humans. Finally, we will attempt to integrate this evidence with possible models of the reactivity-hypertension relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alli, C., Avanzini, F., DiTullio, M., Mariotti, G., Salmoirago, E., Taioli, E., & Radice, M. (1990). Left ventricular diastolic function in normotensive adolescents with different genetic risk of hypertension. Clinical Cardiology, 12, 115–118.

    Article  Google Scholar 

  • Bouchard, T. J., Lykken, D. T., McGue, M., Segal, N. L., & Tellegen, A. (1990). Sources of human psychological differences: The Minnesota study of twins reared apart. Science, 250, 223–228.

    Article  PubMed  Google Scholar 

  • Bova, S., Blaustein, M. P., Ludens, J. H., Harris, D. W., Ducharme, D. W., & Hamlyn, J. M. (1991). Effects of an endogenous ouabain-like compound on heart and aorta. Hypertension, 17, 944–950.

    Article  PubMed  Google Scholar 

  • Curtis, J. J., Luke, R. G., Dustan, H. P., Kashgarian, M., Welchel, J. D., Jones, P., & Diethelm, A. G. (1983). Remission of essential hypertension after renal transplantation. New England Journal of Medicine, 309, 1009–1015.

    Article  PubMed  Google Scholar 

  • Davies, J. E., Ng, L. L., Ameen, M., Syme, P. D., & Aronson, J. K. (1991). Evidence for altered Na+/H+ antiport activity in cultured skeletal muscle cells and vascular smooth muscle cells from the spontaneously hypertensive rat. Clinical Science, 80, 509–516.

    PubMed  Google Scholar 

  • deWardener, H. E. (1991). Kidney, salt intake, and Na+, K+-ATPase inhibitors in hypertension. Hypertension, 17, 830–836.

    Article  PubMed  Google Scholar 

  • Eccleston-Joyner, C. A., & Gray, S. D. (1988). Arterial hypertrophy in the fetal and neonatal spontaneously hypertensive rat. Hypertension, 12, 513–518.

    Article  PubMed  Google Scholar 

  • Everson, S. A., Lovallo, W. R., Sausen, K. P., & Wilson, M. F. (1992). Hemodynamic characteristics of young men at risk for hypertension at rest and during laboratory Stressors. Health Psychology, 11, 24–31.

    Article  PubMed  Google Scholar 

  • Folkow, B. (1982). Physiological aspects of primary hypertension. Physiological Reviews, 62, 347–504.

    PubMed  Google Scholar 

  • Folkow, B. (1990). “Structural Factor” in primary and secondary hypertension. Hypertension, 16, 89–101.

    Article  PubMed  Google Scholar 

  • Froom, P., Bar-David, M., Ribak, J., VanDyk, D., Kaliner, B., & Benbassat, J. (1983). Predictive value of systolic blood pressure in young men for elevated systolic blood pressure 12 to 15 years later. Circulation, 68, 467–469.

    Article  PubMed  Google Scholar 

  • Hallbäck, M. (1975). Interaction between central neurogenic mechanisms and changes in cardiovascular design in primary hypertension. Acta Physiologica Scandinavica, (Suppl. 424), 1–59.

    Google Scholar 

  • Harrap, S. B., Van der Merwe, W. M., Griffin, S. A., MacPherson, F., & Lever, A. F. (1990). Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure long-term. Hypertension, 16, 603–614.

    Article  PubMed  Google Scholar 

  • Hendley, E. D., Wessel, D. J., & VanHouten, J. (1986). Inbreeding of Wistar-Kyoto rat strain with hyperactivity but without hypertension. Behavioral and Neural Biology, 45, 1–16.

    Article  PubMed  Google Scholar 

  • Hendley, E. D., Cierpal, M. A., & McCarty, R. (1988). Sympathetic adrenal medullary response to stress in hyperactive and hypertensive rats. Physiology & Behavior, 44, 45–51.

    Article  Google Scholar 

  • Hunt, S. C., Williams, R. R., & Barlow, G. K. (1986). A comparison of positive family history definitions for defining risk of future disease. Journal of Chronic Diseases, 39, 809–821.

    Article  PubMed  Google Scholar 

  • Julius, S., Randall, O. S., Esler, M. D., Kashima, T., Ellis, C., & Bennett, J. (1975). Altered cardiac responsiveness and regulation in the normal cardiac output type of borderline hypertension. Circulation Research, 36–37 (I) I199–I207.

    Article  Google Scholar 

  • Julius, S., Schork, N., & Schork, A. (1988). Sympathetic hyperactivity in early stages of hypertension: The Ann Arbor dataset. Journal of Cardiovascular Pharmacology, 12(3), S121–S129.

    Article  PubMed  Google Scholar 

  • Julius, S., Li, Y., Brant, D., Krause, L., & Buda, A. J. (1989). Neurogenic pressor episodes fail to cause hypertension, but do induce cardiac hypertrophy. Hypertension, 13, 422–428.

    Article  PubMed  Google Scholar 

  • Kishi, K., & Inoue, T. (1990). Possible mechanisms of abnormal norepinephrine sensitivity and reactivity of resistance vessels and the development of hypertension in spontaneously hypertensive rats: A hypothesis. American Journal of Hypertension, 3, 2025–2055.

    Article  Google Scholar 

  • Knardahl, S., & Hendley, E. D. (1990). Association between cardiovascular reactivity to stress and hypertension or behavior. American Journal of Physiology, 259, H248–H257.

    PubMed  Google Scholar 

  • Lawler, J. E., & Cox, R. H. (1985). The borderline hypertensive rat (BHR): A new model for the study of environmental factors in the development of hypertension. Pavlovian Journal of Biological Sciences, 30, 101–115.

    Google Scholar 

  • Lawler, J. E., Barker, G. F., Hubbard, J. W., & Allen, M. T. (1980). The effects of conflict on tonic levels of blood pressure in the genetically borderline hypertensive rat. Psychophysiology, 17, 363–370.

    Article  PubMed  Google Scholar 

  • Lewanczuk, R. Z., Resnick, L. M., Blumenfeld, J. D., Laragh, J. H., & Pang, P. K. T. (1990). A new circulating hypertensive factor in the plasma of essential hypertensive subjects. Journal of Hypertension, 8, 105–108.

    Article  PubMed  Google Scholar 

  • Mcllhaney, M. L., Shaffer, J. W., & Hines, E. A., Jr. (1975). The heritability of blood pressure: An investigation of 200 pairs of twins using the cold pressor test. Johns Hopkins Medical Journal, 136, 57–64.

    Google Scholar 

  • Mangiapane, M. L., Skoog, K. M., Rittenhouse, P., Blair, M. L., & Sladek, C. D. (1989). Lesion of the area postrema region attenuates hypertension in spontaneously hypertensive rats. Circulation Research, 64, 129–135.

    Article  PubMed  Google Scholar 

  • Manuck, S. B., Kasprowicz, A. L., & Muldoon, M. F. (1990). Behaviorally evoked cardiovascular reactivity and hypertension: Conceptual issues and potential associations. Annals of Behavioral Medicine, 12, 17–29.

    Article  Google Scholar 

  • Montanari, A., Vallisa, D., Ragni, G., Guerra, A., Colla, R., Novarini, A., & Coruzzi, P. (1988). Abnormal renal responses to calcium entry blockade in normotensive offspring of hypertensive parents. Hypertension, 12, 498–505.

    Article  PubMed  Google Scholar 

  • Munger, R. G., Prineas, R. J., & Gomez-Marin, O. (1988). Persistent elevation of blood pressure among children with a family history of hypertension: The Minneapolis children’s blood pressure study. Journal of Hypertension, 6, 647–653.

    Article  PubMed  Google Scholar 

  • Owens, G. K., & Reidy, M. A. (1985). Hyperplastic growth response of vascular smooth muscle cells following induction of acute hypertension in rats by aortic coarctation. Circulation Research, 57, 695–705.

    Article  PubMed  Google Scholar 

  • Pang, P. K. T., Kaneko, T., & Lewanczuk, R. Z. (1990). Parathyroid origin of a new hypertensive factor. Experimental Gerontology, 25, 269–277.

    Article  PubMed  Google Scholar 

  • Pillali, G., & Sutter, M. C. (1989). Effect of plasma from hypertensive patients on contractile response of vascular smooth muscle from normotensive rat. Journal of Physiology and Pharmacology, 67, 1272–1277.

    Article  Google Scholar 

  • Plunkett, W. C., & Overbeck, H. W. (1988). Arteriolar wall thickening in hypertensive rats unrelated to pressure or sympathetic influences. Circulation Research, 63, 937–943.

    Article  PubMed  Google Scholar 

  • Rettig, R., Folberth, C., Kopf, D., Strauss, H., & Unger, T. (1990a). Role of the kidney in the pathogenesis of primary hypertension. Clinical and Experimental Hypertension—Theory and Practice, A12, 957–1002.

    Article  Google Scholar 

  • Rettig, R., Folberth, C., Strauss, H., Kopf, D., Waldherr, R., & Unger, T. (1990b). Role of the kidney in primary hypertension: A renal transplantation study in rats. American Journal of Physiology, 258, F606–F611.

    PubMed  Google Scholar 

  • Sacerdoti, D., Escalante, B., Abraham, N. G., McGiff, J. C., Levere, R. D., & Schwartzman, M. L. (1989). Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science, 243, 388–391.

    Article  PubMed  Google Scholar 

  • Sasakawa, O., Fujii, S., Nogi, O., Shinera, M., Tsumira, K., Seki, J., Wada, M., & Kobata, D. (1983). A study of long-term observations in borderline hypertension. Japanese Circulation Journal, 47, 300–308.

    Article  PubMed  Google Scholar 

  • Sausen, K. P., Lovallo, W. R., & Wilson, M. F. (1991). Cardiovascular activity during cognitive challenge: Predictive strength of behavior pattern, heart rate reactivity, and familial hypertension. Psychophysiology, 28, 639–647.

    Article  PubMed  Google Scholar 

  • Schieken, R. M., Clarke, W. R., & Lauer, R. M. (1981). Left ventricular hypertrophy in children with blood pressures in the upper quintile of the distribution: The Muscadine study. Hypertension, 3, 669–675.

    Article  PubMed  Google Scholar 

  • Smith, P. G., Poston, C. W., & Mills, E. (1984). Ontogeny of neural and non-neural contributions to arterial blood pressure in spontaneously hypertensive rats. Hypertension, 6, 54–60.

    Article  PubMed  Google Scholar 

  • Thompson, L. P., Bruner, C. A., Lamb, F. S., King, C. M., & Webb, R. C. (1987). Calcium influx and vascular reactivity in systemic hypertension. American Journal of Cardiology, 59, 29A–34A.

    Article  PubMed  Google Scholar 

  • Trippodo, N. C., & Frohlich, E. D. (1981). Similarities of genetic (spontaneous) hypertension: Man and rat. Circulation Research, 48, 309–319.

    Article  PubMed  Google Scholar 

  • Turner, J. R., Carroll, D., Sims, J., Hewitt, J. K., & Kelly, K. A. (1986). Temporal and inter-task consistency of heart rate reactivity during active psychological challenge: A twin study. Physiology & Behavior, 38, 641–644.

    Article  Google Scholar 

  • Unger, T., & Rettig, R. (1990). Development of genetic hypertension: Is there a “critical phase”?. Hypertension, 16, 615–616.

    Article  PubMed  Google Scholar 

  • Woodworth, C. H., Knardahl, S., Sanders, B. J., Kirby, R. F., & Johnson, A. K. (1990). Dam strain affects cardiovascular reactivity to acute stress in BHR. Physiology & Behavior, 47, 139–144.

    Article  Google Scholar 

  • Yamori, Y., Matsumoto, M., Yamabe, H., & Okamoto, K. (1969). Augmentation of spontaneous hypertension by chronic stress in rats. Japanese Circulation Journal, 33, 399–409.

    Article  PubMed  Google Scholar 

  • Yao, H., Matsumoto, T., Hirano, M., Kuroki, T., Tsutsumi, T., Uchimera, H., Nakamura, K., Nakahara, T., & Masatoshi, F. (1989). Involvement of brain stem noradrenergic neurons in the development of hypertension in spontaneously hypertensive rats. Neurochemical Research, 14, 75–79.

    Article  PubMed  Google Scholar 

  • Zidek, W., Bachmann, J., Schlüter, H., Witzel, H., Storkebaum, W., & Sachinidis, A. (1990). Effect of plasma from essential hypertensives on tension of aortic strips. Clinical and Experimental Hypertension—Theory and Practice, A12, 365–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Lovallo, W.R., Wilson, M.F. (1992). A Biobehavioral Model of Hypertension Development. In: Turner, J.R., Sherwood, A., Light, K.C. (eds) Individual Differences in Cardiovascular Response to Stress. Perspectives on Individual Differences. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0697-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0697-7_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0699-1

  • Online ISBN: 978-1-4899-0697-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics