Radiometric Measurements for Broadband Optical Sources

  • Jürgen H. Bernhardt
Part of the NATO ASI Series book series (NSSB, volume 242)


To evaluate a broadband optical source, it is normally necessary to determine the spectral distribution of optical radiation emitted from the source at the point of nearest human access. This accessible emission and its spectral distribution for a lighting system may differ from that actually being emitted by the lamp alone due, e.g., to the filtration in the light path.


Effect Function Spectral Irradiance Radiometric Measurement Lithium Tantalate Calcium Tungstate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Davis A., Deane, G.H., and Diffey, B.L., 1976, Possible Dosimeter for Ultraviolet Radiation, Nature, 261:169.ADSCrossRefGoogle Scholar
  2. Driscoll, W. (ed), 1983, Handbooks of Optics, McGraw Hill.Google Scholar
  3. Goldberg, B., Klein, W.H., 1974, Radiometer to Monitor Low Levels of UV Irradiance, Appl Optics, 13:493–496.ADSCrossRefGoogle Scholar
  4. Jackson, S.A., 1980, A film Badge Dosimeter for UVA Radiation, J. Bio med. Eng. 2:63.Google Scholar
  5. Johns, H.E., and Rauth, A.M., 1965, Theory and Design of High Intensity UV Monochromators for Photobiology and Photochemistry Photochem. Photobiol., 4:673.CrossRefGoogle Scholar
  6. Kiefer, J., (ed.), 1977, Ultraviolette Strahlen, Verlag de Gruyter, Berlin.Google Scholar
  7. Koller, L.R., 1965, Ultraviolet Radiation, 2nd ed., Wiley, New York.Google Scholar
  8. Mackenzie, L.A., 1982, Monitoring of Ultraviolet Radiation. In: Practical Aspects of Nonionising Radiation Protection, pp. 73–79. Conference Report Series 36, (London: Hospital Physicists Association).Google Scholar
  9. Meyer, A.E.H. & Seitz, E.O., 1949, Ultraviolet Radiation, Berlin, Walter de Gruyter & Co. (in German).Google Scholar
  10. Moseley, H., Robertson, J., and O’Donoghue, J., 1984, The Suitability of Diazochrome KBL Film for UV Dosimetry, Phys. Med. Biol. 29:679.CrossRefGoogle Scholar
  11. Moseley, H., 1988, Non-Ionizing Radiation: Microwaves, Ultraviolet and Laser Radiation, (Medical Physics Handbook, 18) A. Hilger, Bristol and Philadelphia. In Collaboration with the Hospital Physicists Association.Google Scholar
  12. Mountford P.J., Pepper, M.G., Goldin, D., 1984, An On-line-UV-radiation Monitoring System for Control of Photosensitivity Test Dose, Phys. Med. Biol. Vol. 29, 4:407–417.CrossRefGoogle Scholar
  13. Nagpal, J.S., Ramanathan, G., and Gangadharan, P., 1976, Thermal and Optical Bleaching of Radiation Effects in Silver Activated Meta-phosphate Glass — its Use in UV Dosimetry, Health Phys. 31:157.Google Scholar
  14. Nagpal, J.S., 1978, Ultraviolet Radiation Dosimetry. A review, Med. Phys. Bull., 3:126–130.Google Scholar
  15. Naumann, H., Schröder, G., 1987, Bauelemente der Optik, Taschenbuch für Konstrukteure, Carl Hanser-Verlag, München, Wien.Google Scholar
  16. Pepper, M.G., Mountford, P.J., 1983, A Meter for UV-Dose and Irradiance. Phys. Med. Biol. 28/3:257–267.CrossRefGoogle Scholar
  17. Schreiber P., and Ott, G., 1984, Schutz vor ultravioletter Strahlung. Schriftenreihe der Bundesanstalt für Arbeitsschutz, Dortmund, Sonderschrift S 14.Google Scholar
  18. Sliney, D., Wolbarsht, M., 1980, Safety with Lasers and Other Optical Sources, Plenum Press, New York and London.Google Scholar
  19. Takeuchi, N., Inabe, K., Yamashita, J., and Nakamura, S., 1976, Thermoluminescence of MgO single crystals for UV dosimetry, Health Phys. 31:519.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Jürgen H. Bernhardt
    • 1
  1. 1.Institute for Radiation Hygiene of the Federal Health OfficeNeuherbergGermany

Personalised recommendations