Advertisement

The Neocortex pp 103-109 | Cite as

On the Coincidence of Loss of Electroreception and Reorganization of Brain Stem Nuclei in Vertebrates

  • Bernd Fritzsch
Chapter
Part of the NATO ASI Series book series (NSSA, volume 200)

Abstract

Only anamniotic vertebrates, such as lampreys, sharks, bony fish, and amphibians possess electroreceptive organs. Some bony and cartilaginous fish species have developed electric organs and some bony fish communicate with electric signals. This electrocommunication parallels in many ways the auditory system. Some of these fish have developed a large brain sometimes approaching the brain-body weight ratio of mammals (Bell and Szabo, 1986). These enlarged brain areas, in part related to electrocommunication, may form as much as 50% of the brain volume but may not be recognizable at all in related species. Clearly the sometimes laminated areas of the brain devoted to the processing of electrosensory information display a very large variability in size not matched by any other sensory modality. With respect to the relative increase in size and the laminar organization these changes rival in a way those underlying the evolution of the mammalian cerebral cortex. Understanding of the mechanism(s) through which this variability is achieved in the specialized electrosensory system may help to understand more general problems of vertebrate brain evolution such as the phylogeny of the mammalian cortex.

Keywords

Lateral Line Bony Fish Basilar Papilla Brain Stem Nucleus Auditory Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andres, K.H., Düring, M. von, Petrasch, E. (1988) The fine structure of ampullary and tuberous electroreceptors in the South American blind catfish Pseudocetopsis spec. Anat. Embryol., 177: 523–535.PubMedCrossRefGoogle Scholar
  2. Bell, C.C., and Szabo, T. (1986) Electroreception in mormyrid fish. In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 375–422.Google Scholar
  3. Bleckmann, H., Bullock, T.H., and Jorgensen, J.M. (1988) The lateral linemechanoreceptive mesencephalic, diencephalic, and telencephalic regions in the thornback ray, Platyrhinoidis triseriata (Elasmobranchii). J. Comp. Physiol., 161: 68–84.Google Scholar
  4. Bodznick, D., and Northcutt, R.G. (1984) An electrosensory area in the telencephalon of the little skate, Raja erinacea. Brain Res., 298: 117–124.CrossRefGoogle Scholar
  5. Bodznick, D., and Boord, R.L. (1986) Electroreception in chondrichthyes: central anatomy and physiology. In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 225–256.Google Scholar
  6. Braford, M.R. (1986) African knifefishes: The Xenomystines. In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 453–464.Google Scholar
  7. Bullock, T.H. (1986) Significance of findings on electroreception for general neurobiology. In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 651–674.Google Scholar
  8. Carr, C.E., and Maler, L. (1986) Electroreception in gymnotid fish: central anatomy and physiology. In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 319–374.Google Scholar
  9. Ebbesson, S.O.E. (1984) Evolution and ontogeny of neural circuits. Behav. Brain Sci., 7: 321–366.CrossRefGoogle Scholar
  10. Finger, T.E., Bell, C.C., and Carr, C.E. (1986) Comparisons among electroreceptive teleosts: Why are electrosensory systems so similar? In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 465–482.Google Scholar
  11. Finlay, B.L., Wikler, K.C., and Sengelaub, D.R. (1987) Regressive events in brain development and scenarios for vertebrate brain evolution. Brain Behav. Evol., 30: 102–117.PubMedCrossRefGoogle Scholar
  12. Fritzsch, B., and Münz, H. (1986) Electroreception in amphibians. In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 483–492.Google Scholar
  13. Fritzsch, B. (1988) The lateral-line and inner ear afferents in larval and adult urodeles, Brain Behav. Evol., 31: 325–348.PubMedCrossRefGoogle Scholar
  14. Fritzsch, B., and Wake, M.H. (1988) The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphol-ogy., 108: 210–217.Google Scholar
  15. Fritzsch, B. (1989) Diversity and regression in the amphibian lateral line system. In: S. Coombs, P. Görner, H. Münz (eds.) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer Verlag, 99-115.Google Scholar
  16. Fritzsch, B. (1990) Experimental reorganization in the alar plate of the clawed toad, Xenopus laevis. I. Quantitative and qualitative effects of embryonic otocyst extirpation. Develop. Brain Res., 51: 113–122.CrossRefGoogle Scholar
  17. Gaupp, E. (1912) Die Reichertsche Theorie. Arch. Anat. Physiol., Suppl., 1-416.Google Scholar
  18. McCormick, C.A. (1982) The organization of the octavolateralis area in actinopterygian fishes: A new interpretation. J. Morphol., 171: 159–181.CrossRefGoogle Scholar
  19. Northcutt, R.G. (1986) Electroreception in nonteleost bony fishes. In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 257–286.Google Scholar
  20. Northcutt, R.G., and Puzdrowski, R.L. (1988) Projections of the olfactory bulb and nervus ter-minalis in the silver lamprey. Brain Behav. Evol., 32: 96–107.PubMedCrossRefGoogle Scholar
  21. Northcutt, R.G., and Plassmann W. (1989) Electrosensory activity in the telencephalon of the axolotl. Neurosci. Lett., 99: 79–84.PubMedCrossRefGoogle Scholar
  22. Northcutt, R.G. (1989a) The phylogenetic distribution and innervation of craniate mechanore-ceptive lateral lines. In: S. Coombs, P. Gîrner, H. Münz (eds.) The Mechanosensory Lateral Line. Neurobiology and Evolution. Springer Verlag, pp. 18-78.Google Scholar
  23. Northcutt, R.G. (1989b) Brain variation and phylogenetic trends in elasmobranch fishes. J. Exp.Biol., 2: 83–100.Google Scholar
  24. Parks, T.N., Jackson, H., and Conlee, J.W. (1987) Axon-target cell interactions in the developing auditory system, Curr. Top. Develop. Biol., 21: 309–340.CrossRefGoogle Scholar
  25. Scheich, H., Langner, G., Tidemann, C., Coles, R., and Guppy, A. (1986) Electroreception and electrolocation in platypus. Nature, 319: 401–402.PubMedCrossRefGoogle Scholar
  26. Starck, D. (1982) Die vergleichende Anatomie der Wirbeltiere, pp 274, Springer, HeidelbergGoogle Scholar
  27. Zakon, H.H. (1986) The electroreceptive periphery. In: T.H. Bullock and W. Heiligenberg, (eds.). Electroreception. Wiley: New York, pp. 103–156.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • Bernd Fritzsch
    • 1
  1. 1.Dept. of Neurosci. A-001Scripps Institute of Oceanography, UCSDLa JollaUSA

Personalised recommendations